JAMP  Vol.8 No.5 , May 2020
Solution of Maxwell’s Equations for Cylindrical Symmetry Waveguides
Abstract: The solution of Maxwell’s equations for a piecewise homogeneous medium of cylindrical symmetry has been obtained. The parameters of the cylindrical waveguide modes have been calculated on its basis. The conclusions are confirmed by numerical calculation of the first four modes of a hollow metal waveguide operating as a mode convector.
Cite this paper: Selina, N. (2020) Solution of Maxwell’s Equations for Cylindrical Symmetry Waveguides. Journal of Applied Mathematics and Physics, 8, 753-765. doi: 10.4236/jamp.2020.85058.

[1]   Boudrioua, A. (2010) Photonic Waveguides: Theory and Applications. John Wiley & Sons, Hoboken, 320 p.

[2]   Calvo, M.L. and Lakshminarayanan, V. (2007) Optical Waveguides: from Theory to Applied Mechanics. Taylor & Francis Group, London,

[3]   Jaiswal, R., Kumar, J., Singh, R. and Anitha, V.P. (2016) Simulation Investigation of TEM to TM01 Mode Conversion in Circular Waveguide. International Veda Conference, JNU, Delhi, 2016, 54-56.

[4]   Kumar, V., Dwivedi1, S. and Jain, P.K. (2019) Circular Sectoral WaveguideTM01 to TE11 Mode Converter. Microwave and Optical Technology Letters, 61, 1697-1701,

[5]   Sobolev, D.I., Denisov, G.G., Eremeev, A.G., Holoptsev, V.V. and Tsvetkov, A.I. (2017) Polarization-Dependent TE11-to-TE11/TE01 Waveguide Mode Converter for Transmission Line Mode Switching, 10th International Workshop 2017 “Strong Microwaves and Terahertz Waves: Sources and Applications” EPJ Web of Conferences, 149, 04017.