Back
 JAMP  Vol.8 No.4 , April 2020
Non-Perturbative Treatment of Quantum Mathieu Oscillator
Abstract: We study the evolution in time of the quantum Mathieu oscillator (QMO), according to the motion of a charged particle in a radio frequency Paul trap. We adopt non-perturbative treatment based on the quantized Floquet formalism together with the resonating averages method (RAM). We prove that we can develop solutions of the time-dependent Schrödinger equation of such a system, in terms of the simple harmonic oscillator wave functions. Numerical simulations of the analytical results are performed to show the coherence and the squeezed proprieties of the wave-packet of this system.
Cite this paper: Idrissi, M. , Fedoul, A. and Sayouri, S. (2020) Non-Perturbative Treatment of Quantum Mathieu Oscillator. Journal of Applied Mathematics and Physics, 8, 698-709. doi: 10.4236/jamp.2020.84054.
References

[1]   Klauder, R.J. and Skagerstam, B.S. (1985) Coherent States-Application in Physic and Mathematical Physics. World Scientific, Singapore.
https://doi.org/10.1142/0096

[2]   Cohen-Tannoudji, C., Diu, B. and Laloë, F. (1973) Mécanique Quantique T2. Hermann, Paris, 1083-1224.

[3]   Lo, C.L. (1990) Squeezing by Tuning the Oscillator Frequency. Journal of Physics A: Mathematical and Theoretical, 23, 1155-1165.
https://doi.org/10.1088/0305-4470/23/7/021

[4]   Lewis Jr., H.R. and Reinsenfeld, W.B. (1969) An Exact Quantum Theory of the Time Dependent Harmonic Oscillator and of a Charged Particle Time Dependent Electromagnetic Field. Journal of Mathematical Physics, 10, 1458-1473.
https://doi.org/10.1063/1.1664991

[5]   Profilo, G. and Soliana, G. (1991) Group-Theoretical Approach to the Classical and Quantum Oscillator with Time-Dependent Mass and Frequency. Physical Review, 44, 2057-2065.
https://doi.org/10.1103/PhysRevA.44.2057

[6]   Yeon, K.H., Kim, H.J., Um, C.I., George, T.F. and Pandey, L.N. (1994) Wave Function in the Invariant Representation and Squeezed-State Function of the Time-Dependent Harmonic Oscillator. Physical Review, 50, 1035-1039.
https://doi.org/10.1103/PhysRevA.50.1035

[7]   Floquet, G. (1883) Sur les éqautions différentielles linéaires à coefficients périodiques. Annales scientifiques de l’école normale supérieure, 12, 47-88.
https://doi.org/10.24033/asens.220

[8]   Shirley, J.H. (1965) Solution of the Schrödinger Equation with a Hamiltonian Periodic in Time. Physical Review, 138, 979-987.
https://doi.org/10.1103/PhysRev.138.B979

[9]   Chu, S.I. and Telnov, D.A. (2004) Beyond the Floquet Theorem: Generalized Floquet Formalisms and Quasienergy Methods for Atomic and Molecular Multiphoton Processes in Intense Laser Fields. Physics Reports, 390, 1-131.
https://doi.org/10.1016/j.physrep.2003.10.001

[10]   Huang, Y. and Chu, S.I. (1994) A Stationary Treatment of Time-Dependent Hamiltonian by the Many-Mode Floquet Formalism and Its Application to the Study of Effects of Laser Pulses in Multiphoton Processes. Chemical Physics Letters, 225, 46-54.
https://doi.org/10.1016/0009-2614(94)00607-5

[11]   Breuer, H.P., Dietz, K. and Holthaus, M. (1991) Selective Excitation of Molecular Vibrations by Interference of Floquet States. Journal of Physics B: Atomic, Molecular and Optical Physics, 24, 1343-1357.
https://doi.org/10.1088/0953-4075/24/6/021

[12]   Lemos, N.A. and Natividade, C.P. (1987) Harmonic Oscillator in Expanding Universes. Nuovo Cimento, 99, 211-225.
https://doi.org/10.1007/BF02726583

[13]   Paul, W. (1990) Electromagnetic Traps for Charged and Neutral Particles. Reviews of Modern Physics, 62, 531-540.
https://doi.org/10.1103/RevModPhys.62.531

[14]   Brown, L.S. (1991) Quantum Motion in a Paul Trap. Physical Review Letters, 66, 527-529.
https://doi.org/10.1103/PhysRevLett.66.527

[15]   Hashemloo, A., Dion, C.M. and Rahali, G. (2015) Wave-Packet Dynamics of an Atomic Ion in a Paul Trap: Approximations and Stability. arXiv:physics1312.2419v6, 1-20.

[16]   Breuer, H.P. and Holthaus, M. (1989) Adiabatic Processes in the Ionization of Highly Excited Hydrogen Atoms. Zeitschrift für Physik, 11, 1-14.
https://doi.org/10.1007/BF01436579

[17]   Janati Idrissi, M., Fedoul, A., Achkar, Y., Chatwiti, A. and Sayouri, S. (2011) Squeezing in Floquet States and Quasi-Energies of Harmonic Oscillator Driven by a Strong Periodic Field. African Journal of Mathematical Physics, 10, 21-30.

[18]   Janati Idrissi, M., Fedoul, A., Sayouri, S. and Amila, I. (2020) Anharmonic Potentials Analysis through the Floquet Representation. Journal of Applied Mathematics and Physics, 8, 184-195.
https://doi.org/10.4236/jamp.2020.81014

[19]   Lochak, G. and Thioun, M. (1969) Sur une méthode générale de perturbation en mécanique ondulatoire et son utilisation dans les problèmes de resonance. Journal of Physics, 30, 482-496.
https://doi.org/10.1051/jphys:01969003005-6048200

[20]   Rabi, I.I., Ramsey, N.F. and Schwinger, J. (1954) Use of Rotating Coordinates in Magnetic Resonance Problems. Reviews of Modern Physics, 26, 167-171.
https://doi.org/10.1103/RevModPhys.26.167

[21]   Jàuregui, R. (2001) Nonperturbative and Perturbative Treatments of Parametric Heating in Atom Traps. arXiv:physics/0104075v1, 1-13.
https://doi.org/10.1103/PhysRevA.64.053408

[22]   Zhang, W.M., Feng, D.H. and Gilmore, R. (1990) Coherent States: Theory and Some Applications. Reviews of Modern Physics, 62, 867-924.
https://doi.org/10.1103/RevModPhys.62.867

[23]   Hai, W., Huang, S. and Gao, K. (2003) Wave-Packet Trains of a Time-Dependent Harmonic Oscillator. arXiv: quant-ph/0301156v1, 1-4.

[24]   Um, C.C., Choi, J.R., Yeon, K.H. and George, T. (2002) Exact Quantum Theory of the Harmonic Oscillator with the Classical Solution in the Form of Mathieu Functions. Journal of the Korean Physical Society, 40, 969-973.

 
 
Top