JEP  Vol.11 No.4 , April 2020
Nutrient Removal Structures Using Locally-Sourced Iron and Aluminum By-Products Reduce Nutrient Runoff from Broiler Production Facilities
Abstract: A common issue with filters designed to remove nutrients from runoff is their reduced effectiveness in high-flow conditions. To overcome this challenge, it was determined that nutrient removal from broiler-house fan dust could be more effective if nutrient removal was conducted at the nutrient source. The objective of this study was to evaluate the effectiveness of containment trays (CTs) holding locally sourced by-products installed adjacent to broiler house fans at the University of Arkansas Savoy broiler production facility to capture nutrients released from dust during rainfall over four years (2013 to 2017). By-products used were locally sourced, iron-based red mud (RM) generated during the manufacture of steel belts for tires and alum-based drinking water treatment residual (WTR), where both materials have large phosphorus (P) sorption capacities. Four-year mean annual concentrations of dissolved P of through-flow from RM CTs were consistently below 0.7 mg·L-1 and below 1.6 mg·L-1 for WTR CT through-flow. This equated to an average 11- and 4-fold decrease for RM and WTR, relative to concentrations in runoff from same-sized plots adjacent to sidewall fans, demonstrating their potential to trap P at the source and decrease P runoff to nearby flowing waters. While there was no significant decline in RM or WTR effective-ness over the four-year study, further work needs to be conducted to determine the lifespan of CTs. Use of RM and WTR in CTs at poultry broiler production facilities, along with their subsequent land application, has the potential to reduce the amount of by-product materials that are currently landfilled.
Cite this paper: Herron, S. , Sharpley, A. , Brye, K. and Burke, J. (2020) Nutrient Removal Structures Using Locally-Sourced Iron and Aluminum By-Products Reduce Nutrient Runoff from Broiler Production Facilities. Journal of Environmental Protection, 11, 332-343. doi: 10.4236/jep.2020.114019.

[1]   Jarvie, H.P., Sharpley, A.N., Flaten, D. and Kleinman P.J.A. (2019) Phosphorus Mirabilis: Illuminating the Past and Future of Phosphorus Stewardship. Journal of Environmental Quality, 48, 1127-1132.

[2]   Kleinman, P.J.A., Fanelli, R.M., Hirsch, R.M., Buda, A.R., Easton, Z.M., Wainger, L.A., Brosch, C., Lowenfish, M., Collick, A.S., Shirmohammadi, A., Boomer, K., Hubbart, J.A., Bryant, R.B. and Shenk, G.W. (2019) Phosphorus and the Chesapeake Bay: Lingering Issues and Emerging Concerns for Agriculture. Journal of Environmental Quality, 48, 1191-1203.

[3]   U.S. Environmental Protection Agency (2010) Guidance for Federal Land Management in the Chesapeake Bay Watershed. Chapter 2: Agriculture. EPA841-R-10-002. Office of Wetlands, Oceans, and Watersheds, U.S. Environmental Protection Agency, Washington DC, 247 p.

[4]   Dale, V.H., Kling, C.L., Meyer, J.L., Sanders, J., Stallworth, H., Armitage, T., Wangsness, D., Bianchi, T.S., Blumberg, A., Boynton, W., Conley, D.J., Crumpton, W., David, M.B., Gilber, D., Howarth, R.W., Lowrance, R., Mankin, K.R., Opaluch, J., Paerl, H.W., Reckhow, K., Sharpley, A.N., Simpson, T.W., Snyder, C. and Wright, D. (2010) Hypoxia in the Northern Gulf of Mexico. Springer Series on Environmental Management. Springer Science, New York.

[5]   U.S. Environmental Protection Agency (2011) Administrative Order (CWA-03-2012-0023DN). Findings of Violation and Order of Compliance, in the Matter of Mrs. Lois Alt.

[6]   Smith, D.R., King, K.W. and Williams, M.R. (2015) What Is Causing the Harmful Algal Blooms in Lake Erie. Journal of Soil and Water Conservation, 70, 27A-29A.

[7]   Smith, D.R., Wilson, R.S., King, K.W., Zwonitzer, M., McGrath, J.M., Harmel, R.D., Haney, R.L. and Johnson, L.T. (2018) Lake Erie, Phosphorus and Microcystin: Is It Really the Farmer’s Fault? Journal of Soil and Water Conservation, 73, 48-57.

[8]   Jarvie, H.P., Johnson, L.T., Sharpley, A.N., Smith, D.R., Baker, D.B., Bruulsema, T. and Confesor, R. (2017) Increased Soluble Phosphorus Loads to Lake Erie: Unintended Consequences of Conservation Practices? Journal of Environmental Quality, 46, 123-132.

[9]   Zhang, W., Tang, X., Feng, X., Wang, E., Li, H., Shen, J. and Zhang, F. (2019) Management Strategies to Optimize Soil Phosphorus Utilization and Alleviate Environmental Risk in China. Journal of Environmental Quality, 48, 1167-1175.

[10]   Sharpley, A.N., Kleinman, P.J.A., Baffaut, C., Beegle, D., Bolster, C., Collick, A., Easton, Z., Lory, J., Nelson, N., Osmond, D., Radcliffe, D., Veith, T. and Weld, J. (2017) Evaluation of Phosphorus Site Assessment Tools: Lessons from the USA. Journal of Environmental Quality, 46, 1250-1256.

[11]   Herron, S.L., Brye, K.R., Sharpley, A.N., Miller, D.M. and Daniels, M.B. (2015) Nutrient Composition of Dust Emitted from Poultry Broiler Houses in Northwest Arkansas. Journal of Environmental Protection, 6, 1257-1267.

[12]   U.S. Environmental Protection Agency, Scientific Advisory Board (2011) Review of EPA’s Draft Approaches for Deriving Numeric Nutrient Criteria for Florida’s Estuaries, Coastal Waters, and Southern Inland Flowing Waters. EPA Scientific Advisory Board, Washington DC, 67 p.

[13]   Sharpley, A.N., Kleinman, P.J.A., Flaten, D.N. and Buda, A.R. (2011) Critical Source Area Management of Agricultural Phosphorus: Experiences, Challenges, and Opportunities. Water Science and Technology, 64, 945-952.

[14]   Stout, W.J., Sharpley, A.N., Gburek, W.J. and Pionke, H.B. (1999) Reducing Phosphorus Export from Croplands with FBC Flyash and FGD Gypsum. Fuel, 78, 175-178.

[15]   U.S. Department of Agriculture and U.S. Environmental Protection Agency (1999) Unified National Strategy for Animal Feeding Operations. U.S. Government Printing Office, Washington DC.

[16]   Herron, S.L., Sharpley, A.N., Brye, K.R., Miller, D.M., Watkins, S., McCreery, D. and Daniels, M.B. (2016) Determination of Nutrient Concentrations in Simulated Rainfall-Runoff from Poultry House Dust Deposited Adjacent to Exhaust Fans. Journal of Environmental Protection, 7, 27-40.

[17]   Herron, S.L., Sharpley, A.N., Brye, K.R. and Miller, D.M. (2016) Optimizing Hydraulic and Chemical Properties of Iron and Aluminum Byproducts for Use in On-Farm Containment Structures for Phosphorus Removal. Journal of Environmental Protection, 7, 1835-1849.

[18]   Herron, S.L., Sharpley, A.N., Brye, K.R. and Miller, D.M. (2017) Locally Sourced Iron and Aluminum Byproducts Decrease Phosphorus Leached from Broiler House Dust Deposited near Ventilation Fans. Journal of Environmental Protection, 8, 1026-1036.

[19]   Oliver, I.W., Grant, C.D. and Murray, R.S. (2011) Assessing Effects of Aerobic and Anaerobic Conditions on Phosphorus Sorption and Retention Capacity of Water Treatment Residuals. Journal of Environmental Management, 92, 960-966.

[20]   Vohla, C., Koiv, M., Bavor, H.J., Chazarenc, F. and Mander, U. (2011) Filter Materials for Phosphorus Removal from Wastewater in Treatment Wetlands: A Review. Journal of Ecological Engineering, 37, 70-89.

[21]   Murphy, J. and Riley, J.P. (1962) A Modified Single Solution Method for Determination of Phosphate in Natural Waters. Analytical Chimica Acta, 27, 31-36.

[22]   Patton, C.J. and Kryskalla, J.R. (2003) Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory: Evaluation of Alkaline Persulfate Digestion as an Alternative to Kjeldahl Digestion for the Determination of Total and Dissolved Nitrogen and Phosphorus in Water. U.S. Geological Survey, Water Resources Investigations Report 03-4174. U.S. Geological Survey, Branch of Information Services, Federal Center, Denver, 33 p.

[23]   Lehman, A., O’Rourke, N., Hatcher, L. and Stepanski, E.J. (2013) JMP for Basic Univariate and Multivariate Statistics: Methods for Researchers and Social Scientists. Second Edition, SAS Institute Inc., Cary.

[24]   Brennan, R.B., Murnane, J.G., Sharpley, A.N., Herron, S., Brye, K.R. and Simmons, T. (2019) Soil Phosphorus Dynamics Following Land Application of Unsaturated and Partially Saturated Red Mud and Water Treatment Residuals. Journal of Environmental Management, 248, Article ID: 109296.