[1] Berman, S., et al. (2012) Water Saving Potential in Agriculture in Europe: Findings from the Existing Studies and Application to Case Studies. Final Report Prepared for European Commission DG ENV.
[2] Gleick, P.H. (1993) Water in Crisis. Oxford University Press, New York.
[3] Hasted, J.B. (1976) Aqueous Dielectrics. Vol. VII, 302 S. 112 Abb. 31 Tab. Series: Studies in Chemical Physics. Chapman and Hall, London.
[4] Elliott, S.R. (1998) The Physics and Chemistry of Solids. John Wiley & Sons, Chichester.
[5] Lynden-Bell, R.M., et al. (2010) Water and Life: The Unique Properties of H2O. CRC Press, Boca Raton.
https://doi.org/10.1201/EBK1439803561
[6] Zhang, M.I.N. and Willison, J.H.M. (1993) Electrical Impedance Analysis in Plant Tissues: Impedance Measurement in Leaves. Journal of Experimental Botany, 44, 1369-1375.
https://doi.org/10.1093/jxb/44.8.1369
[7] Stahlberg, R. (2006) Historical Overview on Plant Neurobiology. Plant Signaling & Behavior, 1, 6-8.
https://doi.org/10.4161/psb.1.1.2278
[8] Yan, X.F., et al. (2009) Research Progress on Electrical Signals in Higher Plants. Progress in Natural Science, 19, 531-541.
https://doi.org/10.1016/j.pnsc.2008.08.009
[9] Foster, K.R. and Schwan, H.P. (1996) Dielectric Properties of Tissues. In: Polk, C. and Postow, E., Eds., Handbook of Biological Effects of Electromagnetic Fields, 2nd Edition, CRC Press, Boca Raton, 25-102.
[10] Miklavcic, D., Pavselj, N. and Hart, F.X. (2006) Electric Properties of Tissues. In: Akay, M., Ed., Encyclopedia of Biomedical Engineering, Wiley-Interscience, Hoboken, 1-12.
https://doi.org/10.1002/9780471740360.ebs0403
[11] Cole, K.S. and Curtis, H.J. (1938) Electric Impedance of Nitella during Activity. Journal of General Physiology, 22, 37-64.
https://doi.org/10.1085/jgp.22.1.37
[12] Cole, K.S. and Curtis, H.J. (1939) Electric Impedance of the Squid Giant Axon during Activity. Journal of General Physiology, 22, 649-670.
https://doi.org/10.1085/jgp.22.5.649
[13] Cole, K.S. and Curtis, H.J. (1936) Electric Impedance of Nerve and Muscle. Cold Spring Harbor Symposia on Quantitative Biology, 4, 73-89.
https://doi.org/10.1101/SQB.1936.004.01.010
[14] Cole, K.S. (1928) Electric Impedance of Suspensions of Spheres. Journal of General Physiology, 12, 29.
https://doi.org/10.1085/jgp.12.1.29
[15] Cole, K.S. (1932) Electric Phase Angle of Cell Membranes. Journal of General Physiology, 15, 641.
https://doi.org/10.1085/jgp.15.6.641
[16] Cole, K.S. (1941) Impedance of Single Cells. Tabulae Biologieae (Cellula, Pt. 2), 19, 24-27.
[17] Cole, K.S. and Hodgkin, A.L. (1939) Membrane and Protoplasm Resistance in the Squid Giant Axon. Journal of General Physiology, 22, 671.
https://doi.org/10.1085/jgp.22.5.671
[18] Curtis, H.J. and Cole, K.S. (1937) Transverse Electric Impedance of Nitella. Journal of General Physiology, 21, 189.
https://doi.org/10.1085/jgp.21.2.189
[19] Curtis, H.J. and Cole, K.S. (1938) Transverse Electric Impedance of the Squid Giant Axon. Journal of General Physiology, 21, 757.
https://doi.org/10.1085/jgp.21.6.757
[20] Greenham, C.G., Randall, P.J. and Müller, W.J. (1982) Studies of Phosphorus and Potassium Deficiencies in Trifolium subterraneum Based on Electrical Measurements. Canadian Journal of Botany, 60, 634-644.
https://doi.org/10.1139/b82-084
[21] Muñoz-Huerta, R.F., et al. (2014) An Analysis of Electrical Impedance Measurements Applied for Plant N Status Estimation in Lettuce (Lactuca sativa). Sensors, 14, 11492-11503.
https://doi.org/10.3390/s140711492
[22] Tomkiewicz, D. and Piskier, T. (2012) A Plant Based Sensing Method for Nutrition Stress Monitoring. Precision Agriculture, 13, 370-383.
https://doi.org/10.1007/s11119-011-9252-3
[23] Jackson, P.J. and Harker, F.R. (1999) Apple Bruise Detection by Electrical Impedance Measurement. HortScience, 35, 104-107.
https://doi.org/10.21273/HORTSCI.35.1.104
[24] Cao, Y., et al. (2011) Analysis of the Willow Root System by Electrical Impedance Spectroscopy. Journal of Experimental Botany, 62, 351-358.
https://doi.org/10.1093/jxb/erq276
[25] Jones, C.L., et al. (2006) Plant Biomass Estimation Using Dielectric Properties. Meeting Presentation (Portland), 063092.
[26] Postic, F. and Doussan, C. (2016) Benchmarking Electrical Methods for Rapid Estimation of Root Biomass. Plant Methods, 12, 1.
https://doi.org/10.1186/s13007-016-0133-7
[27] van Emmerik, T., et al. (2017) Dielectric Response of Corn Leaves to Water Stress. IEEE Geoscience and Remote Sensing Letters, 14, 8-12.
https://doi.org/10.1109/LGRS.2016.2606662
[28] van Emmerik, T., et al. (2015) A Comparison between Leaf Dielectric Properties of Stressed and Unstressed Tomato Plants. IEEE International Geoscience and Remote Sensing Symposium, Milan, 26-31 July 2015, 275-278.
https://doi.org/10.1109/IGARSS.2015.7325753
[29] Sinha, K. and Tabib-Azar, M. (2016) Effect of Light and Water on Schefflera Plant Electrical Properties. Journal of Scientific Research & Reports, 9, 1-11.
https://doi.org/10.9734/JSRR/2016/19174
[30] He, J.-X., et al. (2011) A Prototype Portable System for Bioelectrical Impedance Spectroscopy. Sensor Letters, 9, 1151-1156.
https://doi.org/10.1166/sl.2011.1384
[31] Afzal, A., Mousavi, S.F. and Khademi, M. (2010) Estimation of Leaf Moisture Content by Measuring the Capacitance. Journal of Agricultural Science and Technology, 12, 339-346.
[32] Afzal, A. and Mousavi, S.F. (2008) Estimation of Moisture in Maize Leaf by Measuring Leaf Dielectric Constant. International Journal of Agriculture and Biology, 10, 66-68.
[33] Jördens, C., et al. (2009) Evaluation of Leaf Water Status by Means of Permittivity at Terahertz Frequencies. Journal of Biological Physics, 35, 255-264.
https://doi.org/10.1007/s10867-009-9161-0
[34] Burke, E.J., Harlow, R.C. and Ferré, P.A. (2005) Measuring the Dielectric Permittivity of a Plant Canopy and Its Response to Changes in Plant Water Status: An Application of Impulse Time Domain Transmission. Plant and Soil, 268, 123-133.
https://doi.org/10.1007/s11104-004-0303-7
[35] Chuah, H.T., Kam, S.W. and Chye, Y.H. (1997) Microwave Dielectric Properties of Rubber and Oil Palm Leaf Samples: Measurement and Modelling. International Journal of Remote Sensing, 18, 2623-2639.
https://doi.org/10.1080/014311697217503
[36] Greenham, C.G., Norris, D.O., Brock, R.D. and Thompson, A.M. (1952) Some Electrical Differences between Healthy and Virus-Infected Potato Tubers. Nature, 169, 973-974.
https://doi.org/10.1038/169973a0
[37] Greenham, C.G., Helms, K. and Müller, W.J. (1978) Influence of Virus Infections on Impedance Parameters. Journal of Experimental Botany, 29, 867-877.
https://doi.org/10.1093/jxb/29.4.867
[38] Borges, E., et al. (2012) Early Detection and Monitoring of Plant Diseases by Bioelectric Impedance Spectroscopy. IEEE 2nd Portuguese Meeting in Bioengineering, Coimbra, 23-25 February 2012, 1-4.
https://www.researchgate.net/publication/275539532
https://doi.org/10.1109/ENBENG.2012.6331377
[39] Dadshani, S., et al. (2015) Non-Invasive Assessment of Leaf Water Status Using a Dual-Mode Microwave Resonator. Plant Methods, 11, 8.
https://doi.org/10.1186/s13007-015-0054-x
[40] Dietrich, R.C., et al. (2013) Can Root Electrical Capacitance Be Used to Predict Root Mass in Soil? Annals of Botany, 112, 457-464.
https://doi.org/10.1093/aob/mct044
[41] Khalil, S.F., Mohktar, M.S. and Ibrahim, F. (2014) The Theory and Fundamentals of Bioimpedance Analysis in Clinical Status Monitoring and Diagnosis of Diseases. Sensors, 14, 10895-10928.
https://doi.org/10.3390/s140610895
[42] Martinez, M.M. (2012) Utilização de Bioimpedancianadeteção de árvoresinfetadas comescolítideos (Tomicusdestruens Wollaston) e com nemátode (Bursaphelenchusxylophilus. Nickel) da madeira de pinheiro (Portuguese). Thesis (Licenciatura) Universidade de Coimbra.
[43] Chatterjee, S.K., et al. (2015) Exploring Strategies for Classification of External Stimuli Using Statistical Features of the Plant Electrical Response. Journal of the Royal Society Interface, 12, Article ID: 20141225.
https://doi.org/10.1098/rsif.2014.1225
[44] Christman, A. and Grill, E. (2013) Electric Defence. Nature, 500, 404-405.
https://doi.org/10.1038/500404a
[45] Fromm, J. and Lautner, S. (2007) Electrical Signals and Their Physiological Significance in Plants. Plant, Cell and Environment, 30, 249-257.
https://doi.org/10.1111/j.1365-3040.2006.01614.x
[46] Mousavi, S.A.R., Nguyen, C.T., Farmer, E.E. and Kellenberger, S. (2014) Measuring Surface Potential Changes on Leaves. Nature Protocols, 9, 1997-2004.
https://doi.org/10.1038/nprot.2014.136
[47] Oyarce, P. and Gurovich, L. (2010) Electrical Signals in Avocado Trees Responses to Light and Water Availability Conditions Plant Signaling & Behavior, 5, 34-41.
https://doi.org/10.4161/psb.5.1.10157
[48] Ríos-Rojas, L., Tapia, F. and Gurovich, L.A. (2014) Electrophysiological Assessment of Water Stress in Fruit-Bearing Woody Plants. Journal of Plant Physiology, 171, 799-806.
https://doi.org/10.1016/j.jplph.2014.02.005
[49] Volkov, A.G. (2012) Plant Electrophysiology: Methods and Cell Electrophysiology. Springer, Berlin.
https://doi.org/10.1007/978-3-642-29119-7
[50] Davies, E. (2006) Plant Electrophysiology: Methods and Cell Electrophysiology. In: Volkov, A.G., Ed., Electrical Signals in Plants: Facts and Hypotheses, Springer, Berlin, 407-422.
https://doi.org/10.1007/978-3-540-37843-3_17
[51] Stallinga, P. (2016) Electronic Instrumentation. Stallinga.org, Faro.
[52] Choi, J.M. and Kim, T.W. (2013) Humidity Sensor Using an Air Capacitor. Transactions on Electrical and Electronic Materials, 14, 182-186.
https://doi.org/10.4313/TEEM.2013.14.4.182
[53] The Engineering Toolbox.
https://www.engineeringtoolbox.com/linear-expansion-coefficients-d_95.html
[54] Wikiepdia. Wikipedia: Thermal Expansion.
https://en.wikipedia.org/wiki/Thermal_expansion\#Thermal_expansion_coeff
icients_for_various_materials
[55] Tomasanis, D. (1990) Effective Dielectric Constants of Foliage Media. ARCON Corporation Interim Report RADC-TR-90-157.
[56] Malmberg, C.G. and Maryott, A.A. (1956) Dielectric Constant of Water from 0 °C to 100 °C. Journal of Research of the National Bureau of Standards, 56, 2641.
https://doi.org/10.6028/jres.056.001
[57] Pawar, S.D., Murugavel, P. and Lal, D.M. (2009) Effect of Relative Humidity and Sea Level Pressure on Electrical Conductivity of Air over Indian Ocean. Journal of Geophysical Research, 114, D02205.
https://doi.org/10.1029/2007JD009716
[58] McClung, C.R. (2006) Plant Circadian Rhythms. The Plant Cell, 18, 792-803.
https://doi.org/10.1105/tpc.106.040980
[59] Volkov, A.G., et al. (2012) Circadian Rhythms in Biologically Closed Electrical Circuits of Plants. Plant Signaling & Behavior, 7, 282-284.
https://doi.org/10.4161/psb.18798
[60] Fukuda, H., Murase, H. and Tokuda, I.T. (2013) Controlling Circadian Rhythms by Dark-Pulse Perturbations in Arabidopsis thaliana. Scientific Reports, 3, 1533.
https://doi.org/10.1038/srep01533