[1] Breiman, A. and Graur, D. (2013) Wheat Evolution. Israel Journal of Plant Sciences, 43, 85-98.
https://doi.org/10.1080/07929978.1995.10676595
[2] Lee, D.S. and Shan, J. (2003) Combining Lidar Elevation Data and Ikonos Multispectral Imagery for Coastal Classification Mapping. Marine Geodesy, 26, 117-127.
https://doi.org/10.1080/01490410306707
[3] Bork, E. and Su, J. (2007) Integrating LIDAR Data and Multispectral Imagery for Enhanced Classification of Rangeland Vegetation: A Meta-Analysis. Remote Sensing of Environment, 111, 11-24.
https://doi.org/10.1016/j.rse.2007.03.011
[4] Geerling, G., Labrador-Garcia, M., Clevers, J.G.P., Ragas, A.M. and Smits, A.J. (2007) Classification of Floodplain Vegetation by Data Fusion of Spectral (CASI) and Lidar Data. International Journal of Remote Sensing, 28, 4263-4284.
https://doi.org/10.1080/01431160701241720
[5] Kempeneers, P., Deronde, B., Provoost, S. and Houthuys, R. (2009) Synergy of Airborne Digital Camera and Lidar Data to Map Coastal Dune Vegetation. Journal of Coastal Research, 53, 73-82.
https://doi.org/10.2112/SI53-009.1
[6] De Souza, C.H.W., Lamparelli, R.A.C., Rochaa, J.V. and Magalhães, P.S.G. (2017) Height Estimation of Sugarcane Using an Unmanned Aerial System (UAS) Based on Structure from Motion (SfM) Point Clouds. International Journal of Remote Sensing, 38, 2218-2230.
https://doi.org/10.1080/01431161.2017.1285082
[7] Bendig, J., Yu, K., Aasen, H., Bolten, A., Bennertz, S., Broscheit, J., Gnyp, M.L. and Bareth, G. (2015) Combining UAV-Based Plant Height from Crop Surface Models, Visible, and near Infrared Vegetation Indices for Biomass Monitoring in Barley. International Journal of Applied Earth Observation & Geoinformation, 39, 79-87.
https://doi.org/10.1016/j.jag.2015.02.012
[8] Li, W., et al. (2016) Remote Estimation of Canopy Height and Aboveground Biomass of Maize Using High-Resolution Stereo Images from a Low-Cost Unmanned Aerial Vehicle System. Ecological Indicators, 67, 637-648.
https://doi.org/10.1016/j.ecolind.2016.03.036
[9] Houghton, A., Hall, F. and Goetz, J. (2009) Importance of Biomass in the Global Carbon Cycle. Journal of Geophysical Research: Biogeosciences, 114, 1-13.
https://doi.org/10.1029/2009JG000935
[10] Badhwar, D. and Macdonald, B. (1986) Satellite-Derived Leaf-Area-Index and Vegetation Maps as Input to Global Carbon Cycle Models—A Hierarchical Approach. International Journal of Remote Sensing, 7, 265-281.
https://doi.org/10.1080/01431168608954680
[11] Liu, R., Chen, M., Liu, J., Deng, F. and Sun, R. (2007) Application of a New Leaf Area Index Algorithm to China’s Landmass Using MODIS Data for Carbon Cycle Research. Journal of Environmental Management, 85, 649-658.
https://doi.org/10.1016/j.jenvman.2006.04.023
[12] Anthony, D., Elbaum, S., Lorenz, A. and Detweiler, C. (2014) On Crop Height Estimation with UAVs. IROS 2014 Conference Digest, IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, 14-18 September 2014, 4805-4812.
https://doi.org/10.1109/IROS.2014.6943245
[13] Selkowitz, D.J., Green, G., Peterson, B. and Wylie, B. (2012) A Multi-Sensor Lidar, Multi-Spectral and Multi-Angular Approach for Mapping Canopy Height in Boreal Forest Regions. Remote Sensing of Environment, 121, 458-471.
https://doi.org/10.1016/j.rse.2012.02.020
[14] Ehlert, D., Adamek, R. and Horn, H.-J. (2009) Laser Rangefinder-Based Measuring of Crop Biomass under Field Conditions. Precision Agriculture, 10, 395-408.
https://doi.org/10.1007/s11119-009-9114-4
[15] Lati, R.N., Filin, S. and Eizenberg, H. (2013) Estimating Plant Growth Parameters Using an Energy Minimization-Based Stereovision Model. Computers and Electronics in Agriculture, 98, 260-271.
https://doi.org/10.1016/j.compag.2013.07.012
[16] Martin, K.L., Anderson, R.H., Arnall, D.B., Brixcy, K.D., Casillas, M.A., Chung, B., Dobey, B.C., Kamenidou, S.K., Kariuki, S.K., Katsalirou, E.E., Morris, J.C., Moss, J.Q., Rohla, C.T., Sudbury, B.J., Tubana, B.S. and Raun, W.R. (2005) Mid-Season Prediction of Wheat-Grain Yield Potential Using Plant, Soil, and Sensor Measurements. Journal of Plant Nutrition, 29, 873-897.
https://doi.org/10.1080/01904160600649187
[17] Berry, P.M., Sterling, M., Baker, C.J., Spink, J. and Sparkes, D.L. (2003) A Calibrated Model of Wheat Lodging Compared with Field Measurements. Agricultural and Forest Meteorology, 119, 167-180.
https://doi.org/10.1016/S0168-1923(03)00139-4
[18] Chapman, S., Merz, T., Chan, A., Jackway, P., Hrabar, S., Dreccer, M., Holland, E., Zheng, B., Ling, T. and Jimenez-Berni, J. (2014) Pheno-Copter: A Low-Altitude, Autonomous Remote-Sensing Robotic Helicopter for High-Throughput Field-Based Phenotyping. Agronomy, 4, 279-301.
https://doi.org/10.3390/agronomy4020279
[19] Gevaert, C.M., Suomalainen, J., Tang, J. and Kooistra, L. (2015) Generation of Spectral-Temporal Response Surfaces by Combining Multispectral Satellite and Hyperspectral UAV Imagery for Precision Agriculture Applications. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8, 3140-3146.
https://doi.org/10.1109/JSTARS.2015.2406339
[20] Rasmussen, J., Nielsen, J., Garcia-Ruiz, F., Christensen, S. and Streibig, C. (2013) Potential Uses of Small Unmanned Aircraft Systems (UAS) in Weed Research. Weed Research, 53, 242-248.
https://doi.org/10.1111/wre.12026
[21] Zhang, C. and Kovacs, J.M. (2012) The Applications of Small Unmanned Aerial Systems for Precision Agriculture: A Review. Precision Agriculture, 13, 693-712.
https://doi.org/10.1007/s11119-012-9274-5
[22] Lopez-Granados, F., Torres-Sanchez, J., Serr no-Perez, A., de Castro, A., Mesas-Carrascosa, F. and Pena, J. (2016) Early Season Weed Mapping in Sunflower Using UAV Technology: Variability of Herbicide Treatment Maps against Weed Thresholds. Precision Agriculture, 17, 183-199.
https://doi.org/10.1007/s11119-015-9415-8
[23] Honkavaara, E., Saari, H., Kaivosoja, J., Polonen, I., Hakala, T. and Litkey, P. (2013) Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture. Remote Sensing, 5, 5006-5039.
https://doi.org/10.3390/rs5105006
[24] Li, X., Lee, W.S., Li, M., Ehsani, R., Mishra, A.R. and Yang, C. (2012) Spectral Difference Analysis and Airborne Imaging Classification for Citrus Greening Infected Trees. Computers and Electronics in Agriculture, 83, 32-46.
https://doi.org/10.1016/j.compag.2012.01.010
[25] Berni, J.A.J., Zarco-Tejada, P.J., Suarez, L. and Fereres, E. (2009) Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring from an Unmanned Aerial Vehicle. IEEE Transactions on Geoscience and Remote Sensing, 47, 722-738.
https://doi.org/10.1109/TGRS.2008.2010457
[26] Bendig, J.V. (2015) Unmanned Aerial Vehicles (UAVs) for Multi-Temporal Crop Surface Modelling. A New Method for Plant Height and Biomass Estimation Based on RGB-Imaging. PhD Thesis, Universität zu Köln.
[27] Li, W., Niu, Z., Chen, H., Li, D., Wu, M. and Zhao, W. (2016) Remote Estimation of Canopy Height and above Ground Biomass of Maize Using High-Resolution Stereo Images from a Low-Cost Unmanned Aerial Vehicle System. Ecological Indicators, 67, 637-648.
https://doi.org/10.1016/j.ecolind.2016.03.036
[28] Sankaran, S., Khot, R., Espinoza, Z., Jarolmasjed, S., Sathuvalli, R., Vandemark, J., Miklas, N., Carter, H., Pumphrey, O. and Knowles, R. (2015) Low-Altitude, High-Resolution Aerial Imaging Systems for Row and Field Crop Phenotyping: A Review. European Journal of Agronomy, 70, 112-123.
https://doi.org/10.1016/j.eja.2015.07.004
[29] Turner, D., Lucieer, A. and Watson, C. (2012) An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (SfM) Point Clouds. Remote Sensing, 4, 1392-1410.
https://doi.org/10.3390/rs4051392
[30] Zarco-Tejada, P.J., Diaz-Varelaa, R., Angileria, V. and Loudjania, P. (2014) Tree Height Quantification Using Very High-Resolution Imagery Acquired from an Unmanned Aerial Vehicle (UAV) and Automatic 3D Photo-Reconstruction Methods. European Journal of Agronomy, 55, 89-99.
https://doi.org/10.1016/j.eja.2014.01.004
[31] Abdul Salam, R., Osman, A. and Zawawi Talib, A. (2007) Underwater Image Enhancement Using an Integrated Colour Model. IAENG International Journal of Computer Science, 34, 2.
[32] Passoni, D., Pinto, L. and Sona, G. (2014) Use of Unmanned Aerial Systems for Multispectral Survey and Tree Classification: A Test in a Park Area of Northern Italy. European Journal of Remote Sensing, 47, 251-269.
https://doi.org/10.5721/EuJRS20144716
[33] Pinto, L., Pagliari, D., Passoni, D. and Gini, R. (2014) Experimental Analysis of Different Software Packages for Orientation and Digital Surface Modelling from UAV Images. Earth Science Informatics, 7, 97-107.
https://doi.org/10.1007/s12145-013-0142-2
[34] Fritz, A., Kattenborn, T. and Koch, B. (2013) UAV-Based Photogrammetric Point Clouds—Tree Stem Mapping in Open Stands in Comparison to Terrestrial Laser Scanner Point Clouds. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W2, Rostock, 4-6 September 2013, 141-146.
https://doi.org/10.5194/isprsarchives-XL-1-W2-141-2013
[35] Peckham, R.J. and Jordan, G. (2007) Digital Terrain Modelling: Development and Applications in a Policy Support Environment. Springer, Berlin.
https://doi.org/10.1007/978-3-540-36731-4
[36] Demir, N., Sönmez, N.K., Akar, T. and üna, S. (2018) Automated Measurement of Plant Height of Wheat Genotypes Using a DSM Derived from UAV Imagery. 2nd International Electronic Conference on Remote Sensing, Vol. 2, 350.
https://doi.org/10.3390/ecrs-2-05163
[37] GIS Geography (2018) DEM, DSM & DTM Differences—A Look at Elevation Models in GIS.
https://gisgeography.com/dem-dsm-dtm-differences