Uniform Exponential Attractors for Non-Autonomous Strongly Damped Wave Equations

Hongyan Li^{*}

Show more

References

[1] Landahl, P.S., Soerensen, O.H. and Christiansen, P.L. (1982) Soliton Excitations in Josephson Tunnel Junctions. Physical Review B, 25, 5337-5348.

[2] Dell’Oro, F. and Pata, V. (2012) Strongly Damped Wave Equations with Critical Nonlinearities. Nonlinear Analytical TMA, 75, 5723-5735.

http://dx.doi.org/10.1137/0522057

[3] Ghidaglia, J.M. and Marzocchi, A. (1991) Longtime Behavior of Strongly Damped Nonlinear Wave Equations, Global Attractors and Their Dimension. SIAM Journal on Mathematical Analysis, 22, 879-895.

http://dx.doi.org/10.1137/0522057

[4] Li, H. and Zhou, S. (2012) Kolmogorov ε-Entropy of Attractor for a Non-Autonomous Strongly Damped Wave Equation. Communications in Nonlinear Science and Numerical Simulation, 17, 3579-3586.

http://dx.doi.org/10.1016/j.cnsns.2012.01.025

[5] Li, H. and Zhou, S. (2008) On Non-Autonomous Strongly Damped Wave Equations with a Uniform Attractor and Some Averaging. Journal of Mathematical Analysis and Applications, 341, 791-802.

http://dx.doi.org/10.1016/j.jmaa.2007.10.051

[6] Prizzi, M. (2009) Regularity of Invariant Sets in Semilinear Damped Wave Equations. Journal of Differential Equations, 247, 3315-3337.

http://dx.doi.org/10.1016/j.jde.2009.08.011

[7] Sun, C. (2010) Asymptotic Regularity for Some Dissipative Equations. Journal of Differential Equations, 248, 342-362.

http://dx.doi.org/10.1016/j.jde.2009.08.007

[8] Yang, M. and Sun, C. (2009) Dynamics of Strongly Damped Wave Equations in Locally Uniform Spaces: Attractors and Asymptotic Regularity. Transactions of the American Mathematical Society, 361, 1069-1101.

http://dx.doi.org/10.1090/S0002-9947-08-04680-1

[9] Zhou, S. (1999) Global Attractor for Strongly Damped Nonlinear Wave Equations. Functional Difference Equations, 6, 451-470.

[10] Eden, A., Foias, C., Nicolaenko, B. and Temam, R. (1994) Exponential Attractors for Dissipative Evolution Equations. Research in Applied Mathematics, 37, John-Wiley, New York.

[11] Efendiev, M., Miranville, A. and Zelik, S. (2003) Infinite Dimensional Attractors for a Non-Autonomous Reaction-Diffusion System. Mathematische Nachrichten, 248-249, 72-96.

http://dx.doi.org/10.1002/mana.200310004

[12] Chepyzhov, V.V. and Vishik, M.I. (2002) Attractors for Equations of Mathematical Physics. AMS College Publication, Providence.

[13] Efendiev, M., Zelik, S. and Miranville, A. (2005) Exponential Attractors and Finite-Dimensional Reduction for Nonautonomous Dynamical Systems. Proceedings of the Royal Society of Edinburg Sectection A, 135, 703-730.

[14] Miranville, A. (1998) Exponential Attractors for Non-Autonomous Evolution Equations. Applied Mathematical Letters, 11, 19-22.

http://dx.doi.org/10.1016/S0893-9659(98)00004-4

[15] Pata, V. and Squassina, M. (2005) On the Strongly Damped Wave Equation. Communications in Mathematical Physics, 253, 511-533.

http://dx.doi.org/10.1007/s00220-004-1233-1

[16] Atlas, A. (2005) Regularity of the Attractor for Symmetric Regularized Wave Equation. Communications on Pure and Applied Analysis (CPAA), 4, 695-704.

http://dx.doi.org/10.3934/cpaa.2005.4.695

[17] Ogawa, T. and Takeda, H. (2011) Large Time Behavior of Solutions for a System of Nonlinear Damped Wave Equations. Journal of Differential Equations, 251, 3090-3113.

http://dx.doi.org/10.1016/j.jde.2011.07.034

[18] Pata, V. and Zelik, S. (2006) Smooth Attractors for Strongly Damped Wave Equations. Nonlinearity, 19, 1495-1506.

http://dx.doi.org/10.1088/0951-7715/19/7/001