AJPS  Vol.11 No.3 , March 2020
Cambial Variants Combine Successive Cambia and Intraxylary Phloem in Convolvulaceae in Taiwan
Abstract: Secondary stem growth develops different cambial variants in Convolvulaceae. Here, the cambial variant features of 17 species in seven genera (Convolvulaceae) in Taiwan are presented. The xylem rings produce various successive cambial types and the primary xylem and intraxylary phloem are produced in the outer and inner pith, respectively. The two Argyreia species have round or elliptical stems with continuous secondary xylem and phloem rings. In the eight Ipomoea species, secondary growth has two to four layers of successive cambia and xylem, dispersed with parenchyma tissue, except for I. nil and I. violacea with one layer of successive cambia. The first secondary xylem segments are separated by few or many xylem rays: I. cairica and I. obscura have three to five xylem rays and I. triloba has numerous xylem rays. The first secondary xylem of Erycibe henryi is divided by numerous rays in small stems, but develops more layers, as adjacent segments separated by xylem rays, in larger stems. Owing to continuous vascular bundle division, it has a dissected xylem. The secondary growth of Distimate tuberosa and Operculina turpethum produces two layers of successive cambia; the secondary successive cambium is divided evenly by rays into many arcs/segments. The stem thickness of I. pes-caprae subsp. brasiliensis increases via concentric successive cambia. Owing to shallowly lobed stems with directional successive cambia, I. obscura and I. triloba stems are irregularly shaped. I. littoralis and Stictocardia tilifolia stems are triangular without directional successive cambia. I. hederifolia and Merremia gemella stems have two to three deep lobes. Parenchyma proliferation results in thicker cortex with mucilaginous canals. The xylem vessels are dispersed and diffuse-porous; the vasicentric paratracheal parenchyma around them is common to all species. A bracketed key was developed comparing the secondary xylem structures of the 17 species, providing a basis for further morphological studies.
Cite this paper: Yang, S. , Chen, P. and Chen, C. (2020) Cambial Variants Combine Successive Cambia and Intraxylary Phloem in Convolvulaceae in Taiwan. American Journal of Plant Sciences, 11, 437-453. doi: 10.4236/ajps.2020.113032.

[1]   Mauseth, J.D. (1988) Plant Anatomy. The Benjamin/Cummings Publishing Company, Menlo Park, CA.

[2]   Rajput, K.S., Chaudhary, B.D. and Patil, V.S. (2014) Development of Successive Cambia and Structure of Secondary Xylem of Ipomoea obscura (Convolvulaceae). Polish Botanical Journal, 59, 55-61.

[3]   Carlquist, S. (1975) Ecological Strategies of Xylem Evolution. University of California Press, Berkeley, CA.

[4]   Carlquist, S. (2001) Comparative Wood Anatomy: Systematic, Ecological, and Evolutionary Aspects of Dicotyledon Wood. Springer-Verlag Press, Germany.

[5]   Angyalossy, V., Angeles, G., Pace, M.R., Lima, A.C., Dias-Leme, C.L., Lohmann, L.G. and Madero-Vega, C. (2012) An Overview of the Anatomy, Development and Evolution of the Vascular System of Lianas. Plant Ecology and Diversity, 5, 167-182.

[6]   Angyalossy, V., Pace, M.R. and Lima, A.C. (2015) Liana Anatomy: A Broad Perspective on Structural Evolution of the Vascular System. In: Schnitzer, S.A., Bongers, F., Burnham, R.J. and Putz, F.E., Eds., Ecology of Lianas, John Wiley Blackwell, London, UK, 253-287.

[7]   Rajput, K.S. and Gondaliya, A.D. (2017) Internal Cambium and Intraxylary Phloem Development in Ipomoea turbinata Lag. (Convolvulaceae). Flora, 226, 47-54.

[8]   Rajput, K.S., Lekhakb, M.M., Kapadanec, K.K. and Yadav, S.R. (2017) Formation of Tri-lobed Stem and Development of Successive Cambia in the Stems of Argyreia hookeri C. B. Clarke (Convolvulaceae). Flora, 233, 140-149.

[9]   Acevedo-Rodríguez, P. (2005) Vines and Climbing Plants of Puerto Rico and the Virgin Islands. Contributions from the United States National Herbarium, 51, 1-483.

[10]   Isnard, S. and Silk, W.K. (2009) Moving with Climbing Plants from Charles Darwin’s Time into the 21st Century. American Journal of Botany, 96, 1205-1221.

[11]   Carlquist, S. (1991) Anatomy of Vine and Liana Stems: A Review and Synthesis. In: Putz, F.E. and Mooney, H.A., Eds., The Biology of Vines, Cambridge University Press, Cambridge, UK, 53-71.

[12]   Pant, D.D. and Bhatnagar, S. (1975) Morphological Studies in Argyreia Lour. (Convolvulaceae). Botanical Journal of the Linnean Society, 70, 45-69.

[13]   Metcalfe, C.R. and Chalk, L. (1985) Anatomy of the Dicotyledons: Volume 2: Wood Structure and Conclusion of the General Introduction, 2nd Edition, Oxford University Press, New York.

[14]   Metcalfe, C.R. and Chalk, L. (1950) Anatomy of the Dicotyledons: Volume 2. Clarendon Press, Oxford.

[15]   Lowell, C. and Lucansky, T.W. (1986) Vegetative Anatomy and Morphology of Ipomoea hederifolia (Convolvulaceae). Bulletin of the Torrey Botanical Club, 113, 382-397.

[16]   Rajput, K.S., Raole, V.M. and Gandhi, D. (2008) Radial Secondary Growth and Formation of Successive Cambia and Their Products in Ipomoea hederifolia L. (Convolvulaceae). Botanical Journal of the Linnean Society, 158, 30-40.

[17]   Patil, V.S., Rao, K.S. and Rajput, K.S. (2009) Development of Intraxylary Phloem and Internal Cambium in Ipomoea hederifolia (Combretaceae). The Journal of the Torrey Botanical Society, 136, 423-432.

[18]   Rajput, K.S., Patil, V.S. and Rao, K.S. (2014) Multiple Cambia and Secondary Xylem of Ipomoea pes-caprae (L.) R. Br. (Convolvulaceae). Acta Botanica Gallica, 161, 13-19.

[19]   Lowell, C. and Lucansky, T.W. (1990) Vegetative Anatomy and Morphology of Ipomoea quamoclit (Convolvulaceae). Bulletin of the Torrey Botanical Club, 117, 232-246.

[20]   Christenhusz, M.J.M. and Byng, J.W. (2016) The Number of Known Plants Species in the World and Its Annual Increase. Phytotaxa, 261, 201-217.

[21]   Staples, G.W. and Yang, S.Z. (1998) Convolvulaceae. In: Huang, T.C., et al., Eds., Flora of Taiwan, 2nd Edition, Department of Botany National Taiwan University, Taipei, 341-384.

[22]   Yang, S.Z., Chen, P.H., and Staples, G.W. (2015) Argyreia akoensis (Convolvulaceae), a New Species from Southern Taiwan. Taiwania, 60, 117-122.

[23]   Liao, G.I., Chen, M.Y. and Kuoh, C.S. (2000) Cuscuta L. (Convolvulaceae) in Taiwan. Taiwania, 45, 226-234.

[24]   Chen, S.H. and Wu, M.J. (2001) Notes on Two Newly Naturalized Plants in Taiwan. Taiwania, 46, 85-92.

[25]   Hsu T.W., Chiang, T.Y., Tsai, K.C. and Huang, C.C. (2006) Ipomoea eriocarpa R. Br. (Convolvulaceae) Newly Naturalized to Taiwan. Taiwan Journal of Biodiversity, 8, 103-107.

[26]   Hsu, T.W., Wang, K.H. and Chiang, T.Y. (2006) Ipomoea purpurea (L.) Roth (Convolvulaceae), A Species of the I. nil Complex, Newly Naturalized in Taiwan. BioFormosa, 41, 19-22.

[27]   Chen, P.H. and Yang, S.Z. (2017) Ipomoea leucantha Jacq. (Convolvulaceae), a Newly Naturalized Plant in Taiwan. Journal of the National Taiwan Museum, 70, 1-8.

[28]   Chao, C.T., Cheng, C.L. and Wang, C.M. (2019) Ipomoea lacunosa (Convolvulaceae: Ipomoea sect. Batatas): A Newly Naturalized Species of Taiwan. Taiwan Journal of Forestry Science, 34, 55-62.

[29]   Chen, S.H., Su, J.Y. and Wu, M.J. (2009) Notes on Two Newly Naturalized Plants in Taiwan: Evolvulus nummularius (L.) L. (Convolvulaceae) and Acalypha aristata Kunth (Euphorbiaceae). Taiwania, 54, 273-278.

[30]   Tsai Y.C., Lee, P.J., Chang, Y.H. and Hsieh, T.H. (2010) Merremia dissecta (Jacq.) H. Hallier., a Newly Naturalized Species in Taiwan. Journal of Ecology and Environmental Sciences, 3, 1-7.

[31]   Ko, Y.N. and Liu, H.Y. (2011) Merremia cissoides (Lam.) Hallier f. (Convolvulaceae), a Newly Naturalized Plant to Taiwan. Taiwan Journal of Biodiversity, 13, 345-348.

[32]   Chung, S.W., Hsu, T.C. and Chung, A.C. (2017) Merremia quinquefolia (Convolvulaceae), a Newly Naturalized Plant in Taiwan. Taiwan Journal of Biodiversity, 19, 123-129.

[33]   Chao, C.T., Chen, P.H. and Wang, C.M. (2017) Two Newly Naturalized Plant Species in Taiwan: Astraea lobata and Merremia umbellata. Quarterly Journal of Forest Research, 39, 285-294.

[34]   Yang, S.Z. and Buril, M.T. (2012) A New Alien Distribution Record and Addition to the Flora of Taiwan: Jacquemontia polyantha (Schltdl. & Cham.) Hallier f. (Convolvulaceae). Taiwania, 57, 418-421.

[35]   Yang, S.Z. and Chen, P.H. (2016) Cambial Variants in the Family Menispermaceae in Taiwan. American Journal of Plant Science, 7, 841-854.

[36]   Yang, S.Z., Chen, P.H. and Lin, K.C. (2016) Cambial Variants of Liana Species (Fabaceae) in Taiwan. Taiwania, 61, 185-193.

[37]   Simaes, A.R. and Staples, G. (2017) Dissolution of Convolvulaceae Tribe Merremieae and a New Classification of the Constituent Genera. Botanical Journal of the Linnean Society, 183, 561-586.

[38]   Radford, A.E. (1986) Fundamentals of Plant Systematics. Harper & Row Publishers, Inc., New York.

[39]   Wheeler, E.A., Baas, P. and Gasson, P.E. (1989) IAWA List of Microscopic Features for Hardwood Identification with an Appendix on Non-anatomical Information. IAWA Bulletin, 10, 219-332.

[40]   Ferreira, T. and Rasband, W. (2011) The ImageJ User Guide Version 1.44.

[41]   Fang, R.Z. and Staples, G.W. (1995) Convolvulaceae. In: Wu, Z.Y. and Raven, P.H., Eds., Flora of China, Science Press, Beijing, and Missouri Botanical Garden Press, Saint Louis, MO, 271-327.

[42]   Carlquist, S. and Hanson, M.A. (1991) Wood and Stem Anatomy of Convolvulaceae: A Survey. Aliso: A Journal of Systematic and Evolutionary Botany, 13, 51-94.