Back
 CellBio  Vol.9 No.1 , March 2020
De Novo Organelle Biogenesis in the Cyanobacterium TDX16 Released from the Green Alga Haematococcus pluvialis
Abstract: It is believed that eukaryotes arise from prokaryotes, which means that organelles can form de novo in prokaryotes. Such events, however, had not been observed previously. Here, we report the biogenesis of organelles in the endosymbiotic cyanobacterium TDX16 (prokaryote) that was released from its senescent/necrotic host cell of green alga Haematococcus pluvialis (eukaryote). Microscopic observations showed that organelle biogenesis in TDX16 initiated with cytoplasm compartmentalization, followed by de-compartmentalization, DNA allocation, and re-compartmentalization, as such two composite organelles-the primitive chloroplast and primitive nucleus sequestering minor and major fractions of cellular DNA respectively were formed. Thereafter, the eukaryotic cytoplasmic matrix was built up from the matrix extruded from the primitive nucleus; mitochondria were assembled in and segregated from the primitive chloroplast, whereby the primitive nucleus and primitive chloroplast matured into the nucleus and chloroplast respectively. While mitochondria subsequently turned into double-membraned vacuoles after matrix degradation. Results of pigment analyses, 16S rRNA and genome sequencing revealed that TDX16 is a phycocyanin-containing cyanobacterium resembling Chroococcidiopsis thermalis, which had acquired 9,017,401 bp DNAs with 10,301 genes from its host. Accordingly, we conclude that organelle biogenesis in TDX16 is achieved by hybridizing the acquired eukaryotic DNAs with its own one and expressing the hybrid genome. The formation of organelles in cyanobacterium TDX16 is the first case of organelle biogenesis in prokaryotes observed so far, which sheds an unprecedented light on eukaryotes and their connections with prokaryotes, and thus has broad implications on biology.
Cite this paper: Dong, Q. , Xing, X. , Han, Y. , Wei, X. and Zhang, S. (2020) De Novo Organelle Biogenesis in the Cyanobacterium TDX16 Released from the Green Alga Haematococcus pluvialis. CellBio, 9, 29-84. doi: 10.4236/cellbio.2020.91003.
References

[1]   Bevis, B.J., Hammond, A.T., Reinke, C.A. and Glick, B.S. (2002) De Novo Formation of Transitional ER Sites and Golgi Structures in Pichia pastoris. Nature Cell Biology, 4, 750-756.
https://doi.org/10.1038/ncb852

[2]   South, S.T. and Gould, S.J. (1999) Peroxisome Synthesis in the Absence of Preexisting Peroxisomes. Journal of Cell Biology, 144, 255-266.
https://doi.org/10.1083/jcb.144.2.255

[3]   van der Zand, A., Gent, J., Braakman, I. and Tabak, H.F. (2012) Biochemically Distinct Vesicles from the Endoplasmic Reticulum Fuse to Form Peroxisomes. Cell, 149, 397-409.
https://doi.org/10.1016/j.cell.2012.01.054

[4]   Sugiura, A., Mattie, S., Prudent, J. and McBride, H.M. (2017) Newly Born Peroxisomes Are a Hybrid of Mitochondrial and ER-Derived Pre-Peroxisomes. Nature, 542, 251-254.
https://doi.org/10.1038/nature21375

[5]   Stinchcombe, J.C., Page, L.J. and Griffiths, G.M. (2000) Secretory Lysosome Biogenesis in Cytotoxic T Lymphocytes from Normal and Chediak-Higashi Syndrome Patients. Traffic, 1, 435-444.
https://doi.org/10.1034/j.1600-0854.2000.010508.x

[6]   Liu, D.F., Xu, L., Yang, F., Li, D.D., Gong, F.L. and Xu, T. (2005) Rapid Biogenesis and Sensitization of Secretory Lysosomes in NK Cells Mediated by Target-Cell Recognition. Proceedings of the National Academy of Sciences of the United States of America, 102, 123-127.
https://doi.org/10.1073/pnas.0405737102

[7]   Li, Y., Xu, M., Ding, X., Yan, C., Song, Z., Chen, L., Huang, X., Wang, X., Jian, Y., Tang, G., et al. (2016) Protein Kinase C Controls Lysosome Biogenesis Independently of mTORC1. Nature Cell Biology, 18, 1065-1077.
https://doi.org/10.1038/ncb3407

[8]   Hoh, B., Hinz, G., Jeong, B.K. and Robinson, D.G. (1995) Protein Storage Vacuoles Form De Novo during Pea Cotyledon Development. Journal of Cell Science, 108, 299-310.

[9]   Viotti, C., Krüger, F., Krebs, M., Neubert, C., Fink, F., Lupanga, U., Scheuring, D., Boutté, Y., Frescatada-Rosa, M., Wolfenstetter, S., Sauer, N., Hillmer, S., Grebe, M. and Schumacher, K. (2013) The Endoplasmic Reticulum Is the Main Membrane Source for Biogenesis of the Lytic Vacuole in Arabidopsis. Plant Cell, 25, 3434-3449.
https://doi.org/10.1105/tpc.113.114827

[10]   Dong, Q.L., Zhao, X.M., Ma, H.W., Xing, X.Y. and Sun, N.X. (2006) Metabolic Flux Analysis of the Two Astaxanthin-Producing Microorganisms Haematococcus pluvialis and Phaffia rhodozyma in the Pure and Mixed Cultures. Biotechnology Journal, 1, 1283-1292.
https://doi.org/10.1002/biot.200600060

[11]   Dong, Q.L., Li, Z.W., Xing, X.Y. and Chen, B. (2011) Discovery of an Endophytic Cyanobacterium in Haematococcus pluvialis. Journal of Hebei University of Technology, 40, 1-5.
https://doi.org/10.3969/j.issn.1007-2373.2011.03.001

[12]   Dong, Q.L., Xing, X.Y., Wu, H.X., Han, Y., Wei, X.L. and Zhang, S. (2016) Transition of a Prokaryotic Endosymbiotic Cyanobacterium into a Eukaryotic Green Alga. Chemical Engineering (China), 44, 1-6.
https://doi.org/10.3969/j.issn.1005-9954.2016.01.001

[13]   Stanier, R.Y., Kunisawa, R., Mandel, M. and Cohen-Bazire, G. (1971) Purification and Properties of Unicellular Blue-Green Algae (Order Chroococcales). Bacteriological Reviews, 35, 171-205.
https://doi.org/10.1128/MMBR.35.2.171-205.1971

[14]   Ferris, M.J. and Hirsch, C.F. (1991) Method for Isolation and Purification of Cyanobacteria. Applied and Environmental Microbiology, 57, 1448-1452.
https://doi.org/10.1128/AEM.57.5.1448-1452.1991

[15]   Lichtenthaler, H.K. (1987) Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods in Enzymology, 148, 350-382.
https://doi.org/10.1016/0076-6879(87)48036-1

[16]   Adams, S.M., Kao, O.W. and Berns, D.S. (1979) Psychrophile C-Phycocyanin. Plant Physiology, 64, 525-527.
https://doi.org/10.1104/pp.64.4.525

[17]   Garcia-Pichel, F., Nübel, U. and Muyzer, G. (1998) The Phylogeny of Unicellular, Extremely Halotolerant Cyanobacteria. Archives of Microbiology, 169, 469-482.
https://doi.org/10.1007/s002030050599

[18]   Moore, L.R., Rocap, G. and Chisholm, S.W. (1998) Physiology and Molecular Phylogeny of Coexisting Prochlorococcus Ecotypes. Nature, 393, 464.
https://doi.org/10.1038/30965

[19]   Caiola, M.G., Friedmann, R.O. and Friedmann, E.I. (1993) Cytology of Long-Term Desiccation in the Desert Cyanobacterium Chroococcidiopsis (Chroococcales). Phycologia, 32, 315-322.
https://doi.org/10.2216/i0031-8884-32-5-315.1

[20]   Gonzalez-Esquer, C.R., Smarda, J., Rippka, R., Axen, S.D., Guglielmi, G., Gugger, M. and Kerfeld, C.A. (2016) Cyanobacterial Ultrastructure in Light of Genomic Sequence Data. Photosynthesis Research, 129, 147-157.
https://doi.org/10.1007/s11120-016-0286-2

[21]   Yeates, T.O., Kerfeld, C.A., Heinhorst, S., Cannon, G.C. and Shively, J.M. (2008) Protein-Based Organelles in Bacteria: Carboxysomes and Related Microcompartments. Nature Reviews Microbiology, 6, 681-691.
https://doi.org/10.1038/nrmicro1913

[22]   Allen, M.M. (1984) Cyanobacterial Cell Inclusions. Annual Review of Microbiology, 38, 1-25.
https://doi.org/10.1146/annurev.mi.38.100184.000245

[23]   Lang, N.J. (1968) The Fine Structure of Blue-Green Algae. Annual Review of Microbiology, 22, 15-46.
https://doi.org/10.1146/annurev.mi.22.100168.000311

[24]   Eltsov, M. and Zuber, B. (2006) Transmission Electron Microscopy of the Bacterial Nucleoid. Journal of Structural Biology, 156, 246-254.
https://doi.org/10.1016/j.jsb.2006.07.007

[25]   van de Meene, A.M., Hohmann-Marriott, M.F., Vermaas, W.F. and Roberson, R.W. (2006) The Three-Dimensional Structure of the Cyanobacterium Synechocystis sp. PCC 6803. Archives of Microbiology, 184, 259-270.
https://doi.org/10.1007/s00203-005-0027-y

[26]   Peramuna, A. and Summers, M.L. (2014) Composition and Occurrence of Lipid Droplets in the Cyanobacterium Nostoc punctiforme. Archives of Microbiology, 196, 881-890.
https://doi.org/10.1007/s00203-014-1027-6

[27]   Bréhélin, C., Kessler, F. and van Wijk, K.J. (2007) Plastoglobules: Versatile Lipoprotein Particles in Plastids. Trends in Plant Science, 12, 260-266.
https://doi.org/10.1016/j.tplants.2007.04.003

[28]   Austin II, J.R., Frost, E., Vidi, P.A., Kessler, F. and Staehelin, L.A. (2006) Plastoglobules Are Lipoprotein Subcompartments of the Chloroplast That Are Permanently Coupled to Thylakoid Membranes and Contain Biosynthetic Enzymes. Plant Cell, 18, 1693-1703.
https://doi.org/10.1105/tpc.105.039859

[29]   Ytterberg, A.J., Peltier, J. and van Wijk, K.J. (2006) Protein Profiling of Plastoglobules in Chloroplasts and Chromoplasts. A Surprising Site for Differential Accumulation of Metabolic Enzymes. Plant Physiology, 140, 984-997.
https://doi.org/10.1104/pp.105.076083

[30]   Vidi, P., Kanwischer, M., Baginsky, S., Austin, J.R., Csucs, G., Dörmann, P., Kessler, F. and Bréhélin, C. (2006) Tocopherol Cyclase (VTE1) Localization and Vitamin E Accumulation in Chloroplast Plastoglobule Lipoprotein Particles. Journal of Biological Chemistry, 281, 11225-11234.
https://doi.org/10.1074/jbc.M511939200

[31]   Lichtenthaler, H.K. (2013) Plastoglobuli, Thylakoids, Chloroplast Structure and Development of Plastids. In: Biswal, B., Krupinska, K. and Biswal, U.C., Eds., Plastid Development in Leaves during Growth and Senescence Advances in Photosynthesis and Respiration, Springer, Berlin, 337-361.
https://doi.org/10.1007/978-94-007-5724-0_15

[32]   Davidi, L., Levin, Y., Ben-Dor, S. and Pick, U. (2015) Proteome Analysis of Cytoplasmatic and Plastidic β-Carotene Lipid Droplets in Dunaliella bardawil. Plant Physiology, 167, 60-79.
https://doi.org/10.1104/pp.114.248450

[33]   Hobot, J.A., Carlemalm, E., Villiger, W. and Kellenberger, E. (1984) Periplasmic Gel: New Concept Resulting from the Reinvestigation of Bacterial Cell Envelope Ultrastructure by New Methods. Journal of Bacteriology, 160, 143-152.
https://doi.org/10.1128/JB.160.1.143-152.1984

[34]   Liberton, M., Berg, R.H., Heuser, J., Roth, R. and Pakrasi, H.B. (2006) Ultrastructure of the Membrane Systems in the Unicellular Cyanobacterium Synechocystis sp Strain PCC 6803. Protoplasma, 227, 129-138.
https://doi.org/10.1007/s00709-006-0145-7

[35]   Samuels, A.L., Giddings, T.H. and Staehelin, L.A. (1995) Cytokinesis in Tobacco BY-2 and Root Tip Cells: A New Model of Cell Plate Formation in Higher Plants. Journal of Cell Biology, 130, 1345-1357.
https://doi.org/10.1083/jcb.130.6.1345

[36]   Rippka, R., Waterbury, J. and Cohen-Bazire, G. (1974) A Cyanobacterium Which Lacks Thylakoids. Archives of Microbiology, 100, 419-436.
https://doi.org/10.1007/BF00446333

[37]   Rexroth, S., Mullineaux, C.W., Ellinger, D., Sendtko, E., Rögner, M. and Koenig, F. (2011) The Plasma Membrane of the Cyanobacterium Gloeobacter violaceus Contains Segregated Bioenergetic Domains. Plant Cell, 23, 2379-2390.
https://doi.org/10.1105/tpc.111.085779

[38]   Hoiczyk, E. and Hansel, A. (2000) Cyanobacterial Cell Walls: News from an Unusual Prokaryotic Envelope. Journal of Bacteriology, 182, 1191-1199.
https://doi.org/10.1128/JB.182.5.1191-1199.2000

[39]   Simon, R.D. (1971) Cyanophycin Granules form the Blue-Green Alga Anabaena cylindrica: A Reserve Material Consisting of Copolymers of Aspartic Acid and Arginine. Proceedings of the National Academy of Sciences of the United States of America, 68, 265-267.
https://doi.org/10.1073/pnas.68.2.265

[40]   Gantt, E. and Conti, S.F. (1969) Ultrastructure of Blue-Green Algae. Journal of Bacteriology, 97, 1486-1493.
https://doi.org/10.1128/JB.97.3.1486-1493.1969

[41]   Alvarez, H.M., Mayer, F., Fabritius, D. and Steinbüchel, A. (1996) Formation of Intracytoplasmic Lipid Inclusions by Rhodococcus opacus Strain PD630. Archives of Microbiology, 165, 377-386.
https://doi.org/10.1007/s002030050341

[42]   Woodcock, C.L.F., Frado, L.L.Y. and Rattner, J.B. (1984) The Higher Order Structure of Chromatin: Evidence for a Helical Ribbon Arrangement. Journal of Cell Biology, 99, 42-52.
https://doi.org/10.1083/jcb.99.1.42

[43]   Gibbs, S.P. (1962) The Ultrastructure of the Pyrenoids of Green Algae. Journal of Ultrastructure Research, 7, 262-272.
https://doi.org/10.1016/S0022-5320(62)90022-9

[44]   Hay, E.D. and Revel, J.P. (1963) The Fine Structure of the DNP Component of the Nucleus. Journal of Cell Biology, 16, 29-51.
https://doi.org/10.1083/jcb.16.1.29

[45]   Forbes, D.J., Kirschner, M.W. and Newport, J.W. (1983) Spontaneous Formation of Nucleus-Like Structures around Bacteriophage DNA Microinjected into Xenopus Eggs. Cell, 34, 13-23.
https://doi.org/10.1016/0092-8674(83)90132-0

[46]   Lohka, M.J. and Masui, Y. (1984) Roles of Cytosol and Cytoplasmic Particles in Nuclear Envelope Assemble and Sperm Pronuclear Formation in Cell-Free Preparations from Amphibian Eggs. Journal of Cell Biology, 98, 1222-1230.
https://doi.org/10.1083/jcb.98.4.1222

[47]   Hagen, C., Siegmund, S. and Braune, W. (2002) Ultrastructural and Chemical Changes in the Cell Wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during Aplanospore Formation. European Journal of Phycology, 37, 217-226.
https://doi.org/10.1017/S0967026202003669

[48]   Burczyk, J. and Hesse, M. (1981) The Ultrastructure of the Outer Cell Wall-Layer of Chlorella Mutants with and without Sporopollenin. Plant Systematics and Evolution, 138, 121-137.
https://doi.org/10.1007/BF00984613

[49]   Scholz, M.J., Weiss, T.L., Jinkerson, R.E., Jing, J., Roth, R., Goodenough, U., Posewitz, M.C. and Gerken, H.G. (2014) Ultrastructure and Composition of the Nannochloropsis gaditana Cell Wall. Eukaryotic Cell, 13, 1450-1464.
https://doi.org/10.1128/EC.00183-14

[50]   Baudelet, P.H., Ricochon, G., Linder, M. and Muniglia, L. (2017) A New Insight into Cell Walls of Chlorophyta. Algal Research, 25, 333-371.
https://doi.org/10.1016/j.algal.2017.04.008

[51]   Damiani, M.C., Leonardi, P.I., Pieroni, O. and Cáceres, E.J. (2006) Ultrastructure of the Cyst Wall of Haematococcus pluvialis (Chlorophyceae): Wall Development and Behaviour during Cyst Germination. Phycologia, 45, 616-623.
https://doi.org/10.2216/05-27.1

[52]   Paquet, V.E., Lessire, R., Domergue, F., Fouillen, L., Filion, G., Sedighi, A. and Charette, S.J. (2013) Lipid Composition of Multilamellar Bodies Secreted by Dictyostelium discoideum Reveals Their Amoebal Origin. Eukaryotic Cell, 12, 1326-1334.
https://doi.org/10.1128/EC.00107-13

[53]   Nickel, W. and Rabouille, C. (2009) Mechanisms of Regulated Unconventional Protein Secretion. Nature Reviews Molecular Cell Biology, 10, 234-255.
https://doi.org/10.1038/nrm2645

[54]   Zhang, M. and Schekman, R. (2013) Cell Biology. Unconventional Secretion, Unconventional Solutions. Science, 340, 559-561.
https://doi.org/10.1126/science.1234740

[55]   Lemasson, C., Marsac, N.T. and Cohen-Bazire, G. (1973) Role of Allophycocyanin as a Light-Harvesting Pigment in Cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 70, 3130-3133.
https://doi.org/10.1073/pnas.70.11.3130

[56]   Govindjee and Rabinowitch, E. (1960) Two Forms of Chlorophyll a in Vivo with Distinct Photochemical Functions. Science, 132, 355-356.
https://doi.org/10.1126/science.132.3423.355

[57]   Gantt, E., Lipschultz, C.A., Grabowski, J. and Zimmerman, B.K. (1979) Phycobilisomes from Blue-Green and Red Algae: Isolation Criteria and Dissociation Characteristics. Plant Physiology, 63, 615-620.
https://doi.org/10.1104/pp.63.4.615

[58]   Thorne, S.W., Newcomb, E.H. and Osmond, C.B. (1977) Identification of Chlorophyll b in Extracts of Prokaryotic Algae by Fluorescence Spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 74, 575-578.
https://doi.org/10.1073/pnas.74.2.575

[59]   Dong, Q.L. and Xing, X.Y. (2020) Chroococcidiorella tianjinensis, gen. et sp. nov. (Trebouxiophyceae, Chlorophyta), a Green Alga Arises from the Cyanobacterium TDX16. bioRxiv.
https://doi.org/10.1101/2020.01.09.901074

[60]   Bradbeer, J.W., Atkinson, Y.E., Borner, T. and Hagemann, R. (1979) Cytoplasmic Synthesis of Plastid Polypeptdes May Be Controlled by Plastid-Synthesised RNA. Nature, 279, 816-817.
https://doi.org/10.1038/279816a0

[61]   Chan, K.X., Phua, S.Y., Crisp, P., McQuinn, R. and Pogson, B.J. (2016) Learning the Languages of the Chloroplast: Retrograde Signaling and Beyond. Annual Review of Plant Biology, 67, 25-53.
https://doi.org/10.1146/annurev-arplant-043015-111854

[62]   De Souza, A., Wang, J.Z. and Dehesh, K. (2017) Retrograde Signals: Integrators of Interorganellar Communication and Orchestrators of Plant Development. Annual Review of Plant Biology, 68, 1.1-1.24.
https://doi.org/10.1146/annurev-arplant-042916-041007

[63]   Hedtke, B., Wagner, I., Börner, T. and Hess, W.R. (1999) Inter-Organellar Crosstalk in Higher Plants: Impaired Chloroplast Development Affects Mitochondrial Gene and Transcript Levels. The Plant Journal, 19, 635-643.
https://doi.org/10.1046/j.1365-313x.1999.00554.x

[64]   Gibbs, S.P. (1962) Nuclear Envelope—Chloroplast Relationships in Algae. Journal of Cell Biology, 14, 433-444.
https://doi.org/10.1083/jcb.14.3.433

[65]   Bouck, G.B. (1965) Fine Structure and Organelle Associations in Brown Algae. Journal of Cell Biology, 26, 523-537.
https://doi.org/10.1083/jcb.26.2.523

[66]   Gantt, E., Edwards, M.R. and Provasoli, L. (1971) Chloroplast Structure of the Cryptophyceae. Evidence for Phycobiliproteins within Intrathylakoidal Spaces. Journal of Cell Biology, 48, 280-290.
https://doi.org/10.1083/jcb.48.2.280

[67]   Timmis, J.N., Ayliffe, M.A., Huang, C.Y. and Martin, W. (2004) Endosymbiotic Gene Transfer: Organelle Genomes Forge Eukaryotic Chromosomes. Nature Reviews Genetics, 5, 123-135.
https://doi.org/10.1038/nrg1271

[68]   Unseld, M., Marienfeld, J.R., Brandt, P. and Brennicke, A. (1997) The Mitochondrial Genome of Arabidopsis thaliana Contains 57 Genes in 366,924 Nucleotides. Nature Genetics, 15, 57-61.
https://doi.org/10.1038/ng0197-57

[69]   Notsu, Y., Masood, S., Nishikawa, T., Kubo, N., Akiduki, G., Nakazono, M., Hirai, A. and Kadowaki, K. (2002) The Complete Sequence of the Rice (Oryza sativa L.) Mitochondrial Genome: Frequent DNA Sequence Acquisition and Loss during the Evolution of Flowering Plants. Molecular Genetics and Genomics, 268, 434-445.
https://doi.org/10.1007/s00438-002-0767-1

[70]   Alverson, A.J., Wei, X.X., Rice, D.W., Stern, D.B., Barry, K. and Palmer, J.D. (2010) Insights into the Evolution of Mitochondrial Genome Size from Complete Sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae). Molecular Biology and Evolution, 27, 1436-1448.
https://doi.org/10.1093/molbev/msq029

[71]   Knox, E.B. (2014) The Dynamic History of Plastid Genomes in the Campanulaceae Sensu Lato Is Unique among Angiosperms. Proceedings of the National Academy of Sciences of the United States of America, 111, 11097-11102.
https://doi.org/10.1073/pnas.1403363111

[72]   Spooner, D.M., Ruess, H., Iorizzo, M., Senalik, D. and Simon, P. (2017) Entire Plastid Phylogeny of the Carrot Genus (Daucus, Apiaceae): Concordance with Nuclear Data and Mitochondrial and Nuclear DNA Insertions to the Plastid. American Journal of Botany, 104, 296-312.
https://doi.org/10.3732/ajb.1600415

[73]   Goremykin, V.V., Salamini, F., Velasco, R. and Viola, R. (2009) Mitochondrial DNA of Vitis vinifera and the Issue of Rampant Horizontal Gene Transfer. Molecular Biology and Evolution, 26, 99-110.
https://doi.org/10.1093/molbev/msn226

[74]   Iorizzo, M., Grzebelus, D., Senalik, D., Szklarczyk, M., Spooner, D. and Simon, P. (2012) Against the Traffic: The First Evidence for Mitochondrial DNA Transfer into the Plastid Genome. Mobile Genetic Elements, 2, 261-266.
https://doi.org/10.4161/mge.23088

[75]   Straub, S.C.K., Cronn, R.C., Edwards, C., Fishbein, M. and Liston, A. (2013) Horizontal Transfer of DNA from the Mitochondrial to the Plastid Genome and Its Subsequent Evolution in Milkweeds (Apocynaceae). Genome Biology and Evolution, 5, 1872-1885.
https://doi.org/10.1093/gbe/evt140

[76]   Allfrey, V.G., Mirsky, A.E. and Osawa, S. (1955) Protein Synthesis in Isolated Cell Nuclei. Nature, 176, 1042-1049.
https://doi.org/10.1038/1761042a0

[77]   Iborra, F.J., Jackson, D.A. and Cook, P.R. (2001) Coupled Transcription and Translation within Nuclei of Mammalian Cells. Science, 293, 1139-1142.
https://doi.org/10.1126/science.1061216

[78]   Dolan, B.P., Knowlton, J.J., David, A., Bennink, J.R. and Yewdell, J.W. (2010) RNA Polymerase II Inhibitors Dissociate Antigenic Peptide Generation from Normal Viral Protein Synthesis: A Role for Nuclear Translation in Defective Ribosomal Product Synthesis? The Journal of Immunology, 185, 6728-6733.
https://doi.org/10.4049/jimmunol.1002543

[79]   David, A., Dolan, B.P., Hickman, H.D., Knowlton, J.J., Clavarino, G., Pierre, P., Bennink, J.R. and Yewdell, J.W. (2012) Nuclear Translation Visualized by Ribosome-Bound Nascent Chain Puromycylation. Journal of Cell Biology, 197, 45-57.
https://doi.org/10.1083/jcb.201112145

[80]   Apcher, S., Millot, G., Daskalogianni, C., Scherl, A., Manoury, B. and Fåhraeus, R. (2013) Translation of Pre-Spliced RNAs in the Nuclear Compartment Generates Peptides for the MHC Class I Pathway. Proceedings of the National Academy of Sciences of the United States of America, 110, 17951-17956.
https://doi.org/10.1073/pnas.1309956110

[81]   Baboo, S., Bhushan, B., Jiang, H., Grovenor, C.R., Pierre, P., Davis, B.G. and Cook, P.R. (2014) Most Human Proteins Made in Both Nucleus and Cytoplasm Turn over within Minutes. PLoS ONE, 9, e99346.
https://doi.org/10.1371/journal.pone.0099346

[82]   Smith, D.R. and Keeling, P.J. (2015) Mitochondrial and Plastid Genome Architecture: Reoccurring Themes, But Significant Differences at the Extremes. Proceedings of the National Academy of Sciences of the United States of America, 112, 10177-10184.
https://doi.org/10.1073/pnas.1422049112

[83]   Stern, D.B. and Lonsdale, D.M. (1982) Mitochondrial and Chloroplast Genomes of Maize Have a 12-Kilobase DNA Sequence in Common. Nature, 299, 698-702.
https://doi.org/10.1038/299698a0

[84]   Stern, D.B. and Palmer, J.D. (1984) Extensive and Widespread Homologies between Mitochondrial DNA and Chloroplast DNA in Plants. Proceedings of the National Academy of Sciences of the United States of America, 81, 1946-1950.
https://doi.org/10.1073/pnas.81.7.1946

[85]   Zhang, X., Bauman, N., Brown, R., Richardson, T.H., Akella, S., Hann, E., Morey, R. and Smith, D.R. (2019) The Mitochondrial and Chloroplast Genomes of the Green Alga Haematococcus Are Made up of Nearly Identical Repetitive Sequences. Current Biology, 29, R715-R737.
https://doi.org/10.1016/j.cub.2019.06.040

[86]   Lacoste-Royal, G. and Gibbs, S.P. (1985) Ochromonas Mitochondria Contain a Specific Chloroplast Protein. Proceedings of the National Academy of Sciences of the United States of America, 82, 1456-1459.
https://doi.org/10.1073/pnas.82.5.1456

[87]   Bennoun, P. (1982) Evidence for a Respiratory Chain in the Chloroplast. Proceedings of the National Academy of Sciences of the United States of America, 79, 4352-4356.
https://doi.org/10.1073/pnas.79.14.4352

[88]   Peltier, G., Ravenel, J. and Vermeglio, A. (1987) Inhibition of a Respiratory Activity by Short Saturating Flashes in Chlamydomonas: Evidence for a Chlororespiration. Biochimica et Biophysica Acta, 893, 83-90.
https://doi.org/10.1016/0005-2728(87)90151-4

[89]   Vesk, M., Mercer, F.V. and Possingham, J.V. (1965) Observations on the Origin of Chloroplast and Mitochondria in the Leaf Cells of Higher Plants. Australian Journal of Botany, 13, 161-169.
https://doi.org/10.1071/BT9650161

[90]   Ballantine, J.E.M. and Forde, B.J. (1970) The Effect of Light Intensity and Temperature on Chloroplast Ultrastructure in Soybean. American Journal of Botany, 52, 1150-1159.
https://doi.org/10.1002/j.1537-2197.1970.tb09919.x

[91]   Montes, G. and Bradbeer, J.W. (1976) An Association of Chloroplasts and Mitochondria in Zea mays and Hyptis suaveolens. Plant Science Letters, 6, 35-41.
https://doi.org/10.1016/0304-4211(76)90176-0

[92]   Brown, R.H., Bouton, J.H., Rigsby, L. and Rigler, M. (1983) Photosynthesis of Grass Species Differing in Carbon Dioxide Fixation Pathways. VIII. Ultrastructural Characteristics of Panicum Species in the Laxa Group. Plant Physiology, 71, 425-431.
https://doi.org/10.1104/pp.71.2.425

[93]   Brown, R.H., Rigsby, L.L. and Akin, D.E. (1983) Enclosure of Mitochondria by Chloroplasts. Plant Physiology, 71, 437-439.
https://doi.org/10.1104/pp.71.2.437

[94]   Carvalho, A.O., Da Cunha, M., Rodrigues, R., Sudré, C.P., Santos, I.S., Fernandes, K.V.S., Rabelo, G.R. and Gomes, V.M. (2011) Ultrastructural Changes during Early Infection of Vigna unguiculata and Phaseolus vulgaris Leaves by Xanthomonas axonopodis pv. Phaseoli and an Unexpected Association between Chloroplast and Mitochondrion. Acta Physiologiae Plantarum, 33, 2025-2033.
https://doi.org/10.1007/s11738-011-0726-8

[95]   Wildman, S.G., Hongladarom, T. and Honda, S.I. (1962) Chloroplasts and Mitochondria in Living Plant Cells: Cinephotomicrographic Studies. Science, 138, 434-435.
https://doi.org/10.1126/science.138.3538.434

[96]   Valanne, N. and Valanne, T. (1972) Structure of Plastids of Variegated Betula pubescens Mutant. Canadian Journal of Botany, 50, 1835-1839.
https://doi.org/10.1139/b72-230

[97]   Bonzi, L.M. and Fabbri, F. (1975) Chloroplast Protrusions in Arisarum proboscideum (L.) Savi. Caryologia, 28, 407-426.
https://doi.org/10.1080/00087114.1975.10796628

[98]   Zachari, M., Gudmundsson, S.R., Li, Z., Manifava, M., Shah, R., Smith, M., Ktistakis, N.T., et al. (2019) Selective Autophagy of Mitochondria on a Ubiquitin-Endoplasmic Reticulum Platform. Developmental Cell, 5, 627-643.
https://doi.org/10.1016/j.devcel.2019.06.016

[99]   Zhuang, X., Chung, K.P., Cui, Y., Lin, W., Gao, C., Kang, B.H. and Jiang, L. (2017) ATG9 Regulates Autophagosome Progression from the Endoplasmic Reticulum in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 114, E426-E435.
https://doi.org/10.1073/pnas.1616299114

[100]   Marty, F. (1999) Plant Vacuoles. Plant Cell, 11, 587-600.
https://doi.org/10.1105/tpc.11.4.587

[101]   Ragetli, H.W.J., Weintraub, M. and Lo, E. (1970) Degeneration of Leaf Cells Resulting from Starvation after Excision. I. Electron Microscope Observations. Canadian Journal of Botany, 48, 1913-1922.
https://doi.org/10.1139/b70-281

[102]   Aubert, S., Gout, E., Bligny, R., Marty-Mazars, D., Barrieu, F., Alabouvette, J., Marty, F. and Douce, R. (1996) Ultrastructural and Biochemical Characterization of Autophagy in Higher Plant Cells Subjected to Carbon Deprivation: Control by the Supply of Mitochondria with Respiratory Substrates. Journal of Cell Biology, 133, 1251-1263.
https://doi.org/10.1083/jcb.133.6.1251

[103]   Ris, H. and Singh, R.N. (1961) Electron Microscope Studies on Blue-Green Algae. The Journal of Biophysical and Biochemical Cytology, 9, 63-80.
https://doi.org/10.1083/jcb.9.1.63

[104]   Peat, A. and Whitton, B.A. (1967) Environmental Effects on the Structure of the Blue-Green Alga Chlorogloea fritschii. Archiv für Mikrobiologie, 57, 155-180.
https://doi.org/10.1007/BF00408699

[105]   Edwards, M.R., Berns, D.S., Ghiorse, W.C. and Holt, S.C. (1968) Ultrastructure of the Thermophiic Blue-Green Alga, Synechococcus lividus Copeland. The Journal of Phycology, 4, 283-298.
https://doi.org/10.1111/j.1529-8817.1968.tb04697.x

[106]   Miller, M.M. and Lang, N.J. (1968) The Fine Structure of Akinete Formation and Germination in Cylindrospermum. Archiv für Mikrobiologie, 60, 303-313.
https://doi.org/10.1007/BF00408551

[107]   van Wijk, K.J. and Kessler, F. (2017) Plastoglobuli: Plastid Microcompartments with Integrated Functions in Metabolism, Plastid Developmental Transitions, and Environmental Adaptation. Annual Review of Plant Biology, 68, 11.1-11.37.
https://doi.org/10.1146/annurev-arplant-043015-111737

[108]   Menzel, K. and Wild, A. (1989) A Comparative Ultrastructural Investigation of Some Nannochloris Species (Chlorococcales) with Particular References to the Systematic Position of Nanochlorum eucaryotum. Botanica Acta, 102, 152-158.
https://doi.org/10.1111/j.1438-8677.1989.tb00084.x

[109]   Somogyi, B., Felföldi, T., Solymosi, K., Makk, J., Homonnay, Z.G., Horváth, G., Turcsi, E., Böddi, B., Márialigeti, K. and Vörös, L. (2011) Chloroparva pannonica gen. et sp. nov. 15 (Trebouxiophyceae, Chlorophyta): A New Picoplanktonic Green Alga from a Turbid, Shallow Soda Pan. Phycologia, 50, 1-10.
https://doi.org/10.2216/10-08.1

[110]   Somogyi, B., Felföldi, T., Solymosi, K., Flieger, K., Márialigeti, K., Böddi, B. and Vörös, L. (2013) One Step Closer to Eliminating Nomenclatural Problems of Minute Coccoid Green Algae: Pseudochloris wilhelmii gen. et sp. nov. (Trebouxiophyceae, Chlorophyta). European Journal of Phycology, 48, 427-436.
https://doi.org/10.1080/09670262.2013.854411

[111]   Vieler, A., et al. (2012) Genome, Functional Gene Annotation, and Nuclear Transformation of the Heterokont Oleaginous Alga Nannochloropsis oceanica CCMP1779. PLOS Genetics, 8, e1003064.
https://doi.org/10.1371/journal.pgen.1003064

[112]   Atkinson, A.W., Gunning, B.E. and John, P.C.L. (1972) Sporopollenin in the Cell Wall of Chlorella and Other Algae: Ultrastructure, Chemistry, and Incorporation of 14C-Acetate, Studied in Synchronous Cultures. Planta, 107, 1-32.
https://doi.org/10.1007/BF00398011

[113]   Pyliotis, N.A., Goodchild, D.J. and Grimme, L.H. (1975) The Regreening of Nitrogen Deficient Chlorella fusca. II. Structural Changes during Synchronous Regreening. Archives of Microbiology, 103, 259-270.
https://doi.org/10.1007/BF00436359

[114]   Gärtner, G., Uzunov, B., Ingolic, E., Kofler, W., Gacheva, G., Pilarski, P., Zagorchev, L., Odjakova, M. and Stoyneva, M. (2015) Мicroscopic Investigations (LM, TEM and SEM) and Identification of Chlorella Isolate R-06/2 from Extreme Habitat in Bulgaria with Strong Biological Activity and Resistance to Environmental Stress Factors. Biotechnology & Biotechnological Equipment, 29, 536-540.
https://doi.org/10.1080/13102818.2015.1013283

[115]   Zahn, R.K. (1984) A Green Alga with Minimal Eukaryotic Features: Nanochlorum eucaryotum. Origins of Life, 13, 289-303.
https://doi.org/10.1007/BF00927178

[116]   Eikrem, W. and Throndsen, J. (1990) The Ultrastructure of Bathycoccus gen. nov. and B. prasinos sp. nov., a Non-Motile Picoplanktonic Alga (Chlorophyta, Prasinophyceae) from the Mediterranean and Atlantic. Phycologia, 29, 344-350.
https://doi.org/10.2216/i0031-8884-29-3-344.1

[117]   Chretiennot-Dinet, M.J., Courties, C., Vaquer, A., Neveux, J., Claustre, H., Lautier, J. and Machado, M.C. (1995) A New Marine Picoeucaryote: Ostreococcus tauri gen. et sp. nov. (Chlorophyta, Prasinophyceae). Phycologia, 34, 285-292.
https://doi.org/10.2216/i0031-8884-34-4-285.1

[118]   Krienitz, L., Huss, V.A.R. and Hummer, C. (1996) Picoplanktonic Choricystis Species (Chlorococcales, Chlorophyta) and Problems Surrounding the Morphologically Similar “Nannochloris-Like Algae”. Phycologia, 35, 332-341.
https://doi.org/10.2216/i0031-8884-35-4-332.1

[119]   Krienitz, L., Takeda, H. and Hepperle, D. (1999) Ultrastructure, Cell Wall Composition and Phylogenetic Position of Pseudodictyosphaerium jurisii (Chlorophyta, Chlorococcales) Including a Comparison with Other Picoplanktonic Green Algae. Phycologia, 38, 100-107.
https://doi.org/10.2216/i0031-8884-38-2-100.1

[120]   Lewin, R.A., Krienitz, L., Goericke, R., Takeda, H. and Hepperle, D. (2000) Picocystis salinarum gen. et sp. nov. (Chlorophyta)—A New Picoplanktonic Green Alga. Phycologia, 39, 560-565.
https://doi.org/10.2216/i0031-8884-39-6-560.1

[121]   Belykh, O.I., Semenova, E.A., Kuznedelov, K.D., Zaika, E.I. and Guselnikova, N.E. (2000) A Eukaryotic Alga from Picoplankton of Lake Baikal: Morphology, Ultrastructure and rDNA Sequence Data. Hydrobiologia, 435, 83-90.
https://doi.org/10.1023/A:1004056604534

[122]   Hanagata, N., Malinsky-Rushansky, M. and Dubinsky, Z. (1999) Eukaryotic Picoplankton, Mychonastes homosphaera (Chlorophyceae, Chlorophyta), in Lake Kinneret, Israel. Phycological Research, 47, 263-269.
https://doi.org/10.1111/j.1440-1835.1999.tb00307.x

[123]   Henley, W.J., Hironaka, J.L., Guillou, L., Buchheim, M.A., Buchheim, J.A., Fawley, M.W. and Fawley, K.P. (2004) Phylogenetic Analysis of the “Nannochloris-Like” Algae and Diagnoses of Picochlorum oklahomensis gen. et sp. nov. (Trebouxiophyceae, Chlorophyta). Phycologia, 43, 641-652.
https://doi.org/10.2216/i0031-8884-43-6-641.1

[124]   Karnkowska, A., Vacek, V., Zubáčová, Z., Treitli, S.C., Petrželková, R., Eme, L., Novák, L., žársky, V., Barlow, L.D., Herman, E.K., et al. (2016) A Eukaryote without a Mitochondrial Organelle. Current Biology, 26, 1274-1284.
https://doi.org/10.1016/j.cub.2016.03.053

[125]   Allard, B., Rager, M. and Templier, J. (2002) Occurrence of High Molecular Weight Lipids (C80+) in the Trilaminar Outer Cell Walls of Some Freshwater Microalgae. A Reappraisal of Algaenan Structure. Organic Geochemistry, 33, 789-801.
https://doi.org/10.1016/S0146-6380(02)00029-3

[126]   Gelin, F., Volkman, J.K., Largeau, C., Derenne, S., Damste, J.S.S. and De Leeuw, J.W. (1999) Distribution of Aliphatic, Nonhydrolyzable Biopolymers in Marine Microalgae. Organic Geochemistry, 30, 147-159.
https://doi.org/10.1016/S0146-6380(98)00206-X

[127]   Kodner, R.B., Surnmons, R.E. and Knoll, A.H. (2009) Phylogenetic Investigation of the Aliphatic, Non-Hydrolyzable Biopolymer Algaenan, with a Focus on Green Algae. Organic Geochemistry, 40, 854-862.
https://doi.org/10.1016/j.orggeochem.2009.05.003

[128]   Rashidi, B. and Trindade, L.M. (2018) Detailed Biochemical and Morphologic Characteristics of the Green Microalga Neochloris oleoabundans Cell Wall. Algal Research, 35, 152-159.
https://doi.org/10.1016/j.algal.2018.08.033

[129]   Burczyk, J. and Loos, E. (1995) Cell Wall-Bound Enzymatic Activities in Chlorella and Scenedesmus. Journal of Plant Physiology, 146, 748-750.
https://doi.org/10.1016/S0176-1617(11)81943-7

[130]   Matagne, R.F., Loppes, R. and Deltour, R. (1976) Phosphatases of Chlamydomonas reinhardtii: Biochemical and Cytochemical Approach with Specific Mutants. Journal of Bacteriology, 126, 937-950.
https://doi.org/10.1128/JB.126.2.937-950.1976

[131]   Loos, E. and Meindle, D. (1985) Cell-Wall-Bound Lytic Activity in Chlorella fusca: Function and Characterization of an Endomannanase. Planta (Bed.), 166, 557-562.
https://doi.org/10.1007/BF00391282

[132]   Satoh, H. and Takeda, H. (1989) Detection and First Characterisation of a Cell Wall Lytic Activity in Chlorella ellipsoidea C-27. Physiologia Plantarum, 77, 20-26.
https://doi.org/10.1111/j.1399-3054.1989.tb05972.x

[133]   Burczyk, J., Szkawran, H., Zontek, I. and Czygan, F.C. (1981) Carotenoids in the Outer Cell Wall Layer of Scenedesmus (Chlorophyceae). Planta, 151, 247-250.
https://doi.org/10.1007/BF00395176

[134]   Burczyk, J. (1987) Cell Wall Carotenoids in Green Algae That Form Sporopollenin. Phytochemistry, 26, 121-128.
https://doi.org/10.1016/S0031-9422(00)81494-6

[135]   Martinière, A., et al. (2012) Cell Wall Constrains Lateral Diffusion of Plant Plasma-Membrane Proteins. Proceedings of the National Academy of Sciences of the United States of America, 109, 12805-12810.
https://doi.org/10.1073/pnas.1202040109

[136]   Beveridge, T.J. (1999) Structures of Gram-Negative Cell Walls and Their Derived Membrane Vesicles. Journal of Bacteriology, 181, 4725-4733.
https://doi.org/10.1128/JB.181.16.4725-4733.1999

[137]   Guerra-Guimaraes, L., Pinheiro, C., Chaves, I., Barros, D.R. and Ricardo, C.P. (2016) Protein Dynamics in the Plant Extracellular Space. Proteomes, 4, 22.
https://doi.org/10.3390/proteomes4030022

[138]   Chiba, A., Ishida, H., Nishizawa, N.K., Makino, A. and Mae, T. (2003) Exclusion of Ribulose-1,5-bisphosphate Carboxylase/Oxygenase from Chloroplasts by Specific Bodies in Naturally Senescing Leaves of Wheat. Plant and Cell Physiology, 44, 914-921.
https://doi.org/10.1093/pcp/pcg118

[139]   Honig, A., Avin-Wittenberg, T., Ufaz, S. and Galili, G. (2012) A New Type of Compartment, Defined by Plant-Specific Atg8-Interacting Proteins, Is Induced upon Exposure of Arabidopsis Plants to Carbon Starvation. Plant Cell, 24, 288-303.
https://doi.org/10.1105/tpc.111.093112

[140]   Wang, Y., Yu, B., Zhao, J., Guo, J., Li, Y., Han, S., Huang, L., Du, Y., Hong, Y., Tang, D. and Liu, Y. (2013) Autophagy Contributes to Leaf Starch Degradation. Plant Cell, 25, 1383-1399.
https://doi.org/10.1105/tpc.112.108993

[141]   Otegui, M.S., Noh, Y.S., Martínez, D.E., Vila Petroff, M.G., Staehelin, L.A., Amasino, R.M. and Guiamet, J.J. (2005) Senescence-Associated Vacuoles with Intense Proteolytic Activity Develop in Leaves of Arabidopsis and Soybean. The Plant Journal, 41, 831-844.
https://doi.org/10.1111/j.1365-313X.2005.02346.x

[142]   Wang, S. and Blumwald, E. (2014) Stress-Induced Chloroplast Degradation in Arabidopsis Is Regulated via a Process Independent of Autophagy and Senescence-Associated Vacuoles. Plant Cell, 26, 4875-4888.
https://doi.org/10.1105/tpc.114.133116

[143]   Gantt, E. (2011) Oxygenic Photosynthesis and the Distribution of Chloroplasts. Photosynthesis Research, 107, 1-6.
https://doi.org/10.1007/s11120-010-9605-1

[144]   Hoffman, H. and Grigg, G.W. (1958) An Electron Microscopic Study of Mitochondria Formation. Experimental Cell Research, 15, 118-131.
https://doi.org/10.1016/0014-4827(58)90068-5

[145]   Brandes, D., Schofield, B.H. and Anton, E. (1965) Nuclear Mitochondria? Science, 149, 1373-1374.
https://doi.org/10.1126/science.149.3690.1373

[146]   Matsuyama, M. and Suzuki, H. (1972) Seizing Mechanism and Fate of Intranuclear Mitochondria. Experientia, 28, 1347-1348.
https://doi.org/10.1007/BF01965337

[147]   Oliva, H., Valle, A., Díaz Flores, L. and Rivas, M.C. (1973) Intranuclear Mitochondriae in Hodgkin’s Disease. Virchows Archiv B Cell Pathology, 12, 189-194.

[148]   Jensen, H., Engedal, H. and Selmer Satersdal, T. (1976) Ultrastructure of Mitochondria-Containing Nuclei in Human Myocardial Cells. Virchows Archiv B Cell Pathology, 21, 1-12.

[149]   Bakeeva, L.E., Skulachev, V.P., Sudarikova, Yu.V. and Tsyplenkova, V.G. (2001) Mitochondria Enter the Nucleus (One Further Problem in Chronic Alcoholism). Biochemistry, 66, 1335-1341.
https://doi.org/10.1023/A:1013374410540

[150]   Kristensen, T. and Prydz, H. (1986) The Presence of Intact Mitochondrial DNA in HeLa Cell Nuclei. Nucleic Acids Research, 14, 2597-2609.
https://doi.org/10.1093/nar/14.6.2597

[151]   Hirano, T., Shiraishi, K., Adachi, K., Miura, S., Watanabe, H. and Utiyama, H. (1999) Co-Localization of Mitochondrial and Double Minute DNA in the Nuclei of HL-60 Cells But Not Normal Cells. Mutation Research, 425, 195-204.
https://doi.org/10.1016/S0027-5107(99)00037-8

[152]   Hazkani-Covo, E., Zeller, R.M. and Martin, W. (2010) Molecular Poltergeists: Mitochondrial DNA Copies (Numts) in Sequenced Nuclear Genomes. PLOS Genetics, 6, e1000834.
https://doi.org/10.1371/journal.pgen.1000834

[153]   Karlberg, O., Canbäck, B., Kurland, C.G. and Andersson, S.G.E. (2000) The Dual Origin of the Yeast Mitochondrial Proteome. Yeast, 17, 170-187.
https://doi.org/10.1002/1097-0061(20000930)17:3<170::AID-YEA25>3.0.CO;2-V

[154]   Gabaldón, T. and Huynen, M.A. (2003) Reconstruction of the Proto-Mitochondrial Metabolism. Science, 301, 609.
https://doi.org/10.1126/science.1085463

[155]   Gray, M.W. (2015) Mosaic Nature of the Mitochondrial Proteome: Implications for the Origin and Evolution of Mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 112, 10133-10138.
https://doi.org/10.1073/pnas.1421379112

[156]   Tang, B.L. (2015) Mitochondrial Protein in the Nucleus. CellBio, 4, 23-29.
https://doi.org/10.4236/cellbio.2015.42003

[157]   Walen, K.H. (2002) The Origin of Transformed Cells: Studies of Spontaneous and Induced in Cell Cultures from Marsupials, a Snail and Human Amniocytes. Cancer Genetics and Cytogenetics, 133, 45-54.
https://doi.org/10.1016/S0165-4608(01)00572-6

[158]   Walen, K.H. (2004) Spontaneous Cell Transformation: Karyoplasts Derived from Multinucleated Cells Produce New Cell Growth in Senescent Human Epithelial Cell Cultures. In Vitro Cellular & Developmental Biology—Animal, 40, 150-158.
https://doi.org/10.1290/1543-706X(2004)40<150:SCTKDF>2.0.CO;2

[159]   Sundaram, M., Guerrnsey, D.L., Rajaraman, M.M. and Rajaraman, R.R. (2004) Neosis: A Novel Type of Cell Division in Cancer. Cancer Biology & Therapy, 3, 207-218.
https://doi.org/10.4161/cbt.3.2.663

[160]   Leikam, C., Hufnagel, A.L., Otto, C., Murphy, D.J., Mühling, B., Kneitz, S., Nanda, I., Schmid, M., Wagner, T.U., Haferkamp, S., Bröcker, E.B., Schartl, M. and Meierjohann, S. (2015) In Vitro Evidence for Senescent Multinucleated Melanocytes as a Source for Tumor-Initiating Cells. Cell Death & Disease, 6, e1711.
https://doi.org/10.1038/cddis.2015.71

[161]   Zhang, S., Mercado-Uribe, I., Sood, A., Bast, R.C. and Liu, J. (2016) Coevolution of Neoplastic Epithelial Cells and Multilineage Stroma via Polyploid Giant Cells during Immortalization and Transformation of Mullerian Epithelial Cells. Genes Cancer, 7, 60-72.

[162]   Buikis, I., Harju, L. and Freivalds, T. (1999) Origin of Microcells in Human Sarcoma Cell Line HT1080. Analytical Cellular Pathology, 18, 73-85.
https://doi.org/10.1155/1999/461805

[163]   Erenpreisa, J., Cragg, M., Fringes, B., Sharakhov, I. and Illidge, T. (2000) Release of Mitotic Descendents by Giant Cells from Irradiated Burkitt’s Lymphoma Cell Line. Cell Biology International, 24, 635-648.
https://doi.org/10.1006/cbir.2000.0558

[164]   Puig, P.E., Guilly, M.N., Bouchot, A., Droin, N., Cathelin, D., Bouyer, F., et al. (2008) Tumor Cells Can Escape DNA-Damaging Cisplatin through DNA Endoreduplication and Reversible Polyploidy. Cell Biology International, 32, 1031-1043.
https://doi.org/10.1016/j.cellbi.2008.04.021

[165]   Ianzini, F., Kosmacek, E.A., Nelson, E.S., Napoli, E., Erenpreisa, J., Kalejs, M. and Mackey, M.A. (2009) Activation of Meiosis-Specific Genes Is Associated with Depolyploidization of Human Tumor Cells Following Radiation-Induced Mitotic Catastrophe. Cancer Research, 69, 2296-2304.
https://doi.org/10.1158/0008-5472.CAN-08-3364

[166]   Weihua, Z., Lin, Q., Ramoth, A.J., Fan, D. and Fidler, I.J. (2011) Formation of Solid Tumors by a Single Multinucleated Cancer Cell. Cancer, 117, 4092-4099.
https://doi.org/10.1002/cncr.26021

[167]   Zhang, S., Mercado-Uribe, I. and Liu, J. (2013) Generation of Erythroid Cells from Fibroblasts and Cancer Cells in Vitro and in Vivo. Cancer Letters, 333, 205-212.
https://doi.org/10.1016/j.canlet.2013.01.037

[168]   Niu, N., Zhang, J., Zhang, N., Mercado-Uribe, I., Tao, F., Han, Z., et al. (2016) Linking Genomic Reorganization to Tumor Initiation via the Giant Cell Cycle. Oncogenesis, 5, e281.
https://doi.org/10.1038/oncsis.2016.75

[169]   Niu, N., Mercado-Uribe, I. and Liu, J. (2017) Dedifferentiation into Blastomere-Like Cancer Stem Cells via Formation of Polyploid Giant Cancer Cells. Oncogene, 36, 4887-4900.
https://doi.org/10.1038/onc.2017.72

[170]   Zhang, D., Yang, X., Yang, Z., Fei, F., Li, S., Qu, J., Zhang, M., Li, Y., Zhang, X. and Zhang, S. (2017) Daughter Cells and Erythroid Cells Budding from Pgccs and Their Clinicopathological Significances in Colorectal Cancer. Journal of Cancer, 8, 469-478.
https://doi.org/10.7150/jca.17012

[171]   Woodworth, C.D., Bowden, P.E., Doninger, J., Pirisi, L., Barnes, W., Lancaster, W.D. and DiPaolo, J.A. (1988) Characterization of Normal Human Exocervical Epithelial Cells Immortalized in Vitro by Papillomavirus Types 16 and 18 DNA. Cancer Research, 48, 4620-4628.

[172]   Romanov, S.R., Kozakiewics, B.K., Hoist, C.R., Stampfei, M.R., Haupt, L.M. and Tlsty, T.D. (2001) Normal Human Mammary Epithelial Cells Spontaneously Escape Senescence and Acquire Genomic Changes. Nature, 409, 633-637.
https://doi.org/10.1038/35054579

[173]   Dong, Q.L. and Xing, X.Y. (2018) Cancer Cells Arise from Bacteria. Cancer Cell International, 18, 205.
https://doi.org/10.1186/s12935-018-0699-4

[174]   Sagan, L. (1967) On the Origin of Mitosing Cells. Journal of Theoretical Biology, 14, 225-274.
https://doi.org/10.1016/0022-5193(67)90079-3

[175]   Martin, W. and Kowallik, K. (1999) Annotated English Translation of Mereschkowsky’s 1905 Paper “über Natur und Ursprung der Chromatophoren im Pflanzenreiche”. European Journal of Phycology, 34, 287-295.
https://doi.org/10.1017/S0967026299002231

[176]   Zillig, W., Klenk, H.-P., Palm, P., Leffers, H., Pühler, G., Gropp, F. and Garrett, R.A. (1989) Did Eukaryotes Originate by a Fusion Event? Endocytobiosis and Cell Research, 6, 1-25.

[177]   Lake, J.A. and Rivera, M.C. (1994) Was the Nucleus the First Endosymbiont? Proceedings of the National Academy of Sciences of the United States of America, 91, 2880-2881.
https://doi.org/10.1073/pnas.91.8.2880

[178]   Gupta, R.S. and Golding, G.B. (1996) The Origin of the Eukaryotic Cell. Trends in Biochemical Sciences, 21, 166-171.
https://doi.org/10.1016/S0968-0004(96)20013-1

[179]   Harish, A. and Kurland, C.G. (2017) Mitochondria Are Not Captive Bacteria. The Journal of Theoretical Biology, 434, 88-98.
https://doi.org/10.1016/j.jtbi.2017.07.011

[180]   Baum, D.A. (2015) A Comparison of Autogenous Theories for the Origin of Eukaryotic Cells. American Journal of Botany, 102, 1954-1965.
https://doi.org/10.3732/ajb.1500196

 
 
Top