WJNST  Vol.10 No.2 , April 2020
Ground States Structure of Ruthenium Isotopes with Neutron N = 60, 62
Abstract
In this paper, Ruthenium Isotopes with neutron N = 60, 62 have been studied the ground state bands using Matlab computer code interacting boson model (IBM-1). We apply IBM-1 formula for O(6) symmetry in Ru isotopes with neutron N = 60, 62. The theoretical energy levels up to spin-parity 12+ have been obtained for 104,106Ru isotopes. The yrast states, gamma band, beta band, and B(E2) values are calculated for those nuclei. The experimental and calculated R4/2 values indicate that the even-even 104-106Ru isotopes have O(6) dynamic symmetry. The calculated results are compared to the experimental data and are found in good harmony with each other. The plots of the potential energy surface of both nuclei are O(6) characters.

1. Introduction

Recently, Ruthenium isotope has been a focus of the nuclear structure of many theoretical and experimental investigations. The low-lying even nuclei had been successfully explained nuclear collective characters using the interacting boson model-1 (IBM-1) [1]. In the first beginning the collective states can be described by a system of identical bosons NB. These are S-boson L = 0 and d-boson L = 2. There is no discrepancy between neutron and proton in IBM-1. There are three dynamical symmetries indicated by U(5), SU(3) and O(6) analogous to spherical vibrator, deformed rotor, and γ-soft respectively. The microscopic a harmonic vibrator approach (MAVA) used in investigating the lower level collective states in Ruthenium isotopes [2].

The Ruthenium isotopes have atomic number Z = 44. It belongs near to closed shell Sn (magic number Z = 50). The external forms of even 104-106Ru isotopes have g 9 / 2 6 (6 proton holes) and g 9 / 2 10 , 12 (10 and 12 neutron particles) close to magic number 50. This configuration has been investigated the ground state structure from spherical to deformed symmetry. The edifice of yrast levels and electromagnetic strength of Ru isotopes studied by many scientists [3] [4] [5] [6] [7].

Recently, the properties of the yrast level were studied in Pd isotopes with even neutron N = 54 - 64 [8]. The electromagnetic reduced transition strength of Cd isotopes with N = 66 - 74 were investigated [9]. The B(E2) value of yrast band of even 102-112Pd and 96-102Ru isotopes [10] [11] [12] were investigated by interacting boson model (IBM-1). The low-lying level of 184W and 184Os nuclei were investigated [13] [14].

The present aim particularly focuses on the structure of the ground state band and the potential energy surfaces to find the dynamical symmetry of even 104-106Ru isotopes by the application of IBM.

2. Method of Calculation

The Interacting Boson Model (IBM) gives occupation to truncated model space for nuclei with N number of nucleons. It provides a quantitative description of identical particles with forming pairs of angular momentum 0 and 2.

The Hamiltonian of IBM-1 [15]:

H = i = 1 N ε i + i j N V i j (1)

Here ε is energy of boson and Vij is the potential energy of boson between i and j.

Hamiltonian is from multi-pole form [16]

H = ε n ^ d + a 0 ( P ^ P ^ ) + a 1 ( L ^ L ^ ) + a 2 ( Q ^ Q ^ ) + a 3 ( T ^ 3 T ^ 3 ) + a 4 ( T ^ 4 T ^ 4 ) (2)

Here

n ^ d = ( d d ˜ ) , P ^ = 1 2 ( d ˜ d ˜ ) 1 2 ( s ˜ s ˜ )

L ^ = 10 [ d × d ˜ ] (1)

Q ^ = [ d × s ˜ + s × d ˜ ] ( 2 ) 1 2 7 [ d × d ˜ ] (2)

T ^ 3 = [ d × d ˜ ] ( 3 ) , T ^ 4 = [ d × d ˜ ] (4)

Here P is the pairing operator for s and d bosons, Q is quadrupole operator, n ^ d is number of d boson, L is operator of angular momentum, and T3 octuplet operators and T4 is hexadecapole operators.

The Hamiltonian starting with U(6) and finishing with group O(2) as given in Equation (2) is bringing to a lower state of three limits, γ-soft O(6), the vibration U(5) and the rotational SU(3) nuclei [17]. We know that in the SU(3) limits, the effective parameter is the quadrupole a 2 , in the O(6) limit the effective parameter is the pairing a 0 , in U(5) limits, the effective parameter is ε .

The Hamiltonian and eigen-values for the three limits [18]:

U(5):

H ^ U ( 5 ) = ε n ^ d + a 1 ( L ^ L ^ ) + a 3 ( T ^ 3 T ^ 3 ) + a 4 ( T ^ 4 T ^ 4 ) E ( n d , υ , L ) = ε n d + K 1 n d ( n d + 4 ) + K 4 υ ( υ + 3 ) + K 5 L ( L + 1 ) } (3)

with

K 1 = 1 / 12 a 1

K 4 = 1 / 10 a 1 + 1 / 7 a 3 3 / 70 a 4

K 5 = 1 / 14 a 3 + 1 / 14 a 4

O(6):

H ^ 0 ( 6 ) = a 0 P ^ P ^ + a 1 L ^ L ^ + a 3 T ^ 3 T ^ 3 E ( σ , τ , L ) = K 3 [ N b ( N b + 4 ) σ ( σ + 4 ) ] + K 4 τ ( τ + 3 ) + K 5 L ( L + 1 ) } (4)

with

K 3 = 1 / 4 a 0

K 4 = 1 / 2 a 3

K 5 = 1 / 10 a 3 + a 1

SU(3):

H ^ S U ( 3 ) = a 1 L ^ L ^ + a 2 Q ^ Q ^ E ( λ , μ , L ) = K 2 ( λ 2 + μ 2 + 3 ( λ + μ ) + λ μ ) + K 5 L ( L + 1 ) } (5)

with

K 2 = 1 / 2 a 2

K 5 = a 1 3 / 8 a 2

K1, K2, K3, K4, and K5 are other forms of strength parameters.

Then applying particular limit of symmetry (O(6), SU(3), U(5)) to determine the frame of a set of nuclei is more advantageous than full Hamiltonian of IBM-1. It comprise multi-free parameters those make it simple to fit the structure of a nuclei. A flaw chart of method of calculation is given in Figure 1.

3. Results and Discussion

The obtained results have discussed for yrast energy level, γ-band, β-band, effective charge used to reproduce B(E2) values, transition probabilities B(E2), maxing ratio and contour plots of the potential energy surfaces using IBM-1.

The γ-unstable limit has applied for 104,106Ru nuclei using data of experimental energy ratios (E2: E4: E6: E8 = 1:2.5:4.5:6.5). In the framework of IBM-1, the even

Figure 1. Flowchart of method of calculation.

104-106Ru nuclei have three protons boson hole and five and six neutrons boson particle respectively. Therefore total bosons numbers of 104Ru and 106Ru nuclei are 8 and 9, respectively. The IBM-1 models carry out with no difference between the bosons of proton and neutron. The energy ratio R = E 4 1 + / E 2 1 + gives the information of the symmetry shapes of a nucleus. The symbol E 2 1 + and E 4 1 + is at the energy level 2 1 + and 4 1 + respectively. It is known that the R = E 4 1 + / E 2 1 + 2 is for U(5), R = E 4 1 + / E 2 1 + 2.5 is for O(6) and R = E 4 1 + / E 2 1 + 3.33 for SU(3) [19] [20]. The experimental R4/2 of 104Ru and 106Ru isotopes is 2.48 and 2.60, respectively. Figure 2 shows, R4/2 values of 104Ru and 106Ru isotopes are O(6) symmetry.

Figure 2. The arrows indicate the line of E ( 4 1 + ) / E ( 2 1 + ) values of the U(5), O(6) and SU(3) limits. The E ( 4 1 + ) / E ( 2 1 + ) values of experimental data22 of the 104,106Ru isotopes are presented as function of neutrons.

The best fit was taken up to 12+ of Ru isotopes with neutron N = 60, 62. The parameters were determined the experimental eigen values (E(nd, υ, L)) from the Equation (4), where nd, υ and L are quantum numbers. The parameters in the present data are shown in Table 1.

The calculated energy levels as well as experimental data are presented in Table 2. According to the weight of fitting the Ru-104 and Ru-106 nuclei are good candidates of O(6) symmetry. The calculation of γ-bands and β-bands are compared with experimental data and presented to Table 3 and Table 4. From the tables, the IBM calculations and experimental results are in good agreements [21].

The reduced electric transition probabilities give the more information on the structure of nuclei. The E2 transition operator must be a Hermitian tensor of rank two; consequently, the number of bosons must conserve.

T E 2 = α 2 [ d s + s d ] ( 2 ) + β 2 [ d d ] ( 2 ) (6)

Here TE2 is the operator of reduced matrix elements of the E2. (s, d) are creation and (s, d) are annihilation operators for s and d bosons. α2 indicated the effective quadrupole charge and β2 is dimensionless coefficient, β2 = χα2

B ( E 2 , J i J f ) = 1 2 J i + 1 | J f | T E 2 | J i | 2 (7)

The parameters, α2 and β2 of Equation (6), were adjusted to reproduce the experimental B ( E 2 , 2 1 + 0 1 + ) . The effective charge (eB) in present calculation is shown in Table 5. The values of eB were estimated to reproduce experimentally B ( E 2 , 2 1 + 0 1 + ) . The values β2 = 0 for 104,106Ru isotopes because these nuclei have the O(6) property. The calculated values of B(E2) transitions with experimental data are presented in Table 6 for Ru isotopes with neutron N = 60, 62 in this study [21]. The calculated data of IBM-1 is good agreements with the available experimental results.

Table 1. Adopted values for the parameters used for IBM-1 calculations. All parameters are given in MeV, excepted N and CHQ.

Table 2. g-band (in MeV) for even 104-106Ru nuclei.

Table 3. γ-band (in MeV) for even 104-106Ru nuclei.

Table 4. β-band (in MeV) for even 104-106Ru nuclei.

Table 5. Effective charge used to reproduce B(E2) values for even 104-106Ru nuclei.

Table 6. Experimental and the IBM-1 values of B(E2) for even 104-106Ru nuclei (in e2b2).

The application of potential energy surface (PES) gives the information to find microscopic and geometric shapes such as spherical, prolate, oblate and γ independent (γ soft). It gives us about symmetry, the shape of nuclei, the minimum deepness and the change of the shape. The PES of the IBM Hamiltonian was drawn by the Skyrme mean with

| N , β , γ = 1 N ! ( b c + ) N | 0 , (8)

b c + = ( 1 + β 2 ) 1 / 2 { S + + β [ cos γ ( d 0 + ) + 1 / 2 sin γ ( d 2 + + d 2 + ) ] } , (9)

The energy surface E(N, β, γ) for O(6) limits as a function of β and γ, has been calculated [1] [22]. Here, β were indicated the total deformation of a nucleus. Figure 3 shows the contour plots in the γ-β plane resulting from E(N, β, γ) for 104Ru and 106Ru isotopes. The potential surfaces are approximately independent of gamma only. In this figure, the color lines show the values of the potential energy surface in MeV. The mapped IBM energy surfaces of 104Ru and 106Ru are O(6) characters.

Figure 3. Contour map of potential energy surfaces for Ru isotopes with N = 60, 62.

4. Conclusion

The yrast band, gamma band and beta band, electromagnetic transition and potential energy surface of 104Ru and 106Ru isotopes calculated in terms of O(6) limit of interacting boson model-1. The energy levels up to 12+ of 104,106Ru nucleus found by the best fitted of the parameters in the Hamiltonian of the IBM-1. The analyses of the IBM-1 results for the ground state band suggest a satisfactory agreement with the experimental data. The nobility and contribution of this work included that the framework of interacting boson approximations shows the Ru with neutron numbers 60 and 62 considered gamma soft O(6) symmetry.

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant No. G-223-662-37. The authors, therefore, acknowledge with thanks DSR for technical and financial support. The authors are very grateful to the University of Mosul/College of Education for Pure Science for their provided facilities, which helped to improve the quality of this work.

Cite this paper
Hossain, I. , Kassim, H. , Al-Jubbori, M. , Sharrad, F. and Mansour, S. (2020) Ground States Structure of Ruthenium Isotopes with Neutron N = 60, 62. World Journal of Nuclear Science and Technology, 10, 76-84. doi: 10.4236/wjnst.2020.102008.
References

[1]   Iachello, F. and Aritma, A. (1987) The Interacting Boson Model. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511895517

[2]   Kotila, J., Suhonen, J. and Delion D.S. (2003) Low-Lying Collective States in Ru98-106 Isotopes Studied Using a Microscopic an Harmonic Vibrator Approach. Physical Review C, 68, Article ID: 054322.
https://doi.org/10.1103/PhysRevC.68.054322

[3]   Che, X.L., et al. (2004) High Spin Band Structure in 112R. Chinese Physics Letters, 21, 1904.
https://doi.org/10.1088/0256-307X/21/10/011

[4]   Che, X.L., et al. (2006) Collective Band Structures in the Neutron-Rich107,109Ru Nuclei. Chinese Physics Letters, 23, 328.

[5]   Luo, Y.X., et al. (2009) Odd-Parity Bands of 108, 110, 112Ru. International Journal of Modern Physics E, 18, 1697-1716.
https://doi.org/10.1142/S0218301309013646

[6]   Frank, A., Isacker, P.V. and Warner, D.D. (1997) Supersymmetry in Transitional Nuclei and Its Application to the Ru and Rh Isotopes. Physics Letters B, 197, 474-478.
https://doi.org/10.1016/0370-2693(87)91036-7

[7]   Troltenier, D., Maruhm, J.A., Greiner, W., Velazquez, V.A., Hess, P.O. and Hamilton, J.H.Z. (1991) Shape Transitions and Shape Coexistence in the Ru and Hg Chains. Physica A, 338, 261.
https://doi.org/10.1007/BF01288188

[8]   Ahmed, I.M., et al. (2012) The Evolution Properties of Even-Even 100-110Pd Nuclei. International Journal of Modern Physics E, 21, Article ID: 1250101.
https://doi.org/10.1142/S0218301312501017

[9]   Abdullah, H.Y., Hossain, I., Ahmed, I.M., Ahmed, S.T., Saeed, M.A. and Ibrahim, N. (2013) Electromagnetic Reduced Transition Properties of Even-Even 104-112Cd Isotopes. Indian Journal of Physics, 87, 571-575.
https://doi.org/10.1007/s12648-013-0257-9

[10]   Hossain, I., Saeed, M.A., Ghani, N.N.A., Sa’adeh, H., Hussein, M. and Abdullah, H.Y. (2014) Electromagnetic Reduced Transition Properties of the Ground State Band of Even-Even 102-106Pd Isotopes by Means of Interacting Boson Model-1. Indian Journal of Physics, 88, 59-65.
https://doi.org/10.1007/s12648-013-0374-5

[11]   Hossain I., Abdullah, H.Y., Ahmed, I.M. and Saeed, M.A. (2014) B(E2) Value of Even-Even 108-112Pd Isotopes by Interacting Boson Model-1. Chinese Physics C, 38, Article ID: 024104.
https://doi.org/10.1088/1674-1137/38/2/024103

[12]   Hossain, I., Ahmed, I.M., Sharrad, F.I. and Abdullah, H.Y. (2015) Yrast States and B (E2) Values of Even 100-102Ru Isotopes Using Interacting Boson Model (IBM-1). Chiang Mai Journal of Science, 42, 996-1004.

[13]   Sharrad, F.I., Hossain, I., Ahmed, I.M., Abdullah, H.Y., Ahmad, S.T. and Ahmed, A.S. (2015) U(5) Symmetry of Even 96,98Ru Isotopes under the Framework of Interacting Boson Model (IBM-1). Brazilian Journal of Physics, 45, 340-346.
https://doi.org/10.1007/s13538-015-0302-6

[14]   Sharrad, F.I., Abdullah, H.Y., Al-Dahan, N., Umran, N.M., Okhunov, A.A. and Kassim, A.H. (2013) Low-Lying States of Odd Nuclei in the South-West 208 Pb Region. Chinese Physics C, 37, Article ID: 034101.
https://doi.org/10.1088/1674-1137/37/3/034101

[15]   Green, L.K. (2009) Nuclear Structure of 112Cd through Studies of β Decay. The University of Green, Green Bay, WI.

[16]   Al-Maqtary, K.A. (2013) IBM-1 Calculations of Energy Levels and Electric Transition Probabilities B(E2) in 158-160Gd Isotopes. Jordan Journal of Physics, 6, 95-102.

[17]   Lachello, F. (1981) Nuclear Structure. Plenum Press, New York.

[18]   Isacker, P.V. (2005) The Interacting Boson Model, Nuclear Structure and Decay Data: Theory and Evaluation Workshop.

[19]   Zamfir, V.N. and Casten, R.F. (2003) Phase/Shape Transitions in Nuclei. Proceedings of the Romanian Academy, Series A, 4, 1-9.

[20]   Mittal, H.M. and Vidya, D. (2012) Nuclear Structure of Xe-Pt Nuclei in the Framework of ARM and Odd-Even Staggering. Turkish Journal of Physics, 36, 117-131.

[21]   Richard, B. & Firestone (1999) Table of Isotopes. John Wiley & Sons, New York.

[22]   Casten, R.F. and Warner, D.D. (1988) The Interacting Boson Approximation. Reviews of Modern Physics, 60, 389-469.
https://doi.org/10.1103/RevModPhys.60.389

 
 
Top