Back
 ENG  Vol.12 No.2 , February 2020
Experimental Evaluation of Parameterized Nonlinear MPC Applied to PEM Fuel Cell
Abstract: This paper proposes a parameterized nonlinear model-based predictive control (NMPC) strategy to tackle the oxygen excess ratio regulation challenge of a proton exchange membrane fuel cell. In practice, the most challenging part regarding NMPC strategies remains the on-line implementation. In fact, NMPC strategies, at least in their basic form, involve heavy computation to solve the optimization problem. In this work, a specific parameterization of control actions has been designed to address this limitation and achieve on-line implementation. To assess the effectiveness and relevance of the proposed strategy, the controller has been implemented on-line, experimentally validated on a real fuel cell and compared to the built-in controller. Performance of the parameterized NMPC controller in terms of setpoint tracking accuracy, disturbances rejection and computational cost, have tested under several control scenarios. Experimental results have shown the excellent tracking capability, disturbances rejection ability and low computational cost of the NMPC controller, regardless of the operating conditions. Moreover, compared to the built-in controller the proposed strategy has demonstrated better disturbances rejection capability. Overall, the proposed parameterized NMPC controller appears as an excellent candidate to address the oxygen excess ratio regulation issue.
Cite this paper: Damour, C. , Grondin, D. , Benne, M. , Grondin-Perez, B. and Chabriat, J. (2020) Experimental Evaluation of Parameterized Nonlinear MPC Applied to PEM Fuel Cell. Engineering, 12, 99-116. doi: 10.4236/eng.2020.122010.
References

[1]   Larminie, J. and Dicks, A. (2003) Fuel Cell Systems Explained. John Wiley & Sons Ltd., New York.
https://doi.org/10.1002/9781118878330

[2]   Wang, C. and Nehrir, M.H. (2007) Load Transient Mitigation for Stand-Alone Fuel Cell Power Generation Systems. IEEE Transactions on Energy Conversion, 22, 864-872.
https://doi.org/10.1109/TEC.2006.881081

[3]   Wang, C., Nehrir, M.H. and Gao, H. (2006) Control of PEM Fuel Cell Distributed Generation Systems. IEEE Transactions on Energy Conversion, 21, 586-595.
https://doi.org/10.1109/TEC.2005.860404

[4]   Huang, S.R., Lin, C.Y., Wu, C.C. and Yang, S.J. (2008) The Application of Fuzzy Controller for Fuel Cell Generating Studies. International Journal of Hydrogen Energy, 33, 5205.
https://doi.org/10.1016/j.ijhydene.2008.05.018

[5]   Wang, F.C. and Ko, C.C. (2010) Multivariable Robust PID Control for a PEMFC System. International Journal of Hydrogen Energy, 35, 10437.
https://doi.org/10.1016/j.ijhydene.2010.07.111

[6]   Methekar, R.N., Prasad, V. and Gudi, R.D. (2007) Dynamic Analysis and Linear Control Strategies for Proton Exchange Membrane Fuel Cell Using Distributed Parameter Model. Journal of Power Sources, 165, 152-170.
https://doi.org/10.1016/j.jpowsour.2006.11.047

[7]   Li, Q., Chen, W., Wang, Y., Jia, J. and Han, M. (2009) Nonlinear Robust Control of Proton Exchange Membrane Fuel Cell by State Feedback Exact Linearization. Journal of Power Sources, 194, 338-348.
https://doi.org/10.1016/j.jpowsour.2009.04.077

[8]   Da Fonseca, R., Bideaux, E., Gerard, M., Jeanneret, B., Desbois-Renaudin, M. and Sari, A. (2014) Control of PEMFC System Air Group Using Differential Flatness Approach: Validation by a Dynamic Fuel Cell System Model. Applied Energy, 113, 219-229.
https://doi.org/10.1016/j.apenergy.2013.07.043

[9]   Hatti, M. and Tioursi, M. (2009) Dynamic Neural Network Controller Model of PEM Fuel Cell System. International Journal of Hydrogen Energy, 34, 5015-5021.
https://doi.org/10.1016/j.ijhydene.2008.12.094

[10]   Hasikos, J., Sarimveis, H., Zervas, P.L. and Markatos, N.C. (2009) Operational Optimization and Real-Time Control of Fuel-Cell Systems. Journal of Power Sources, 193, 258-268.
https://doi.org/10.1016/j.jpowsour.2009.01.048

[11]   Methekar, R.N., Patwardhan, S.C., Rengaswamy, R., Gudi, R.D. and Prasad, V. (2010) Control of Proton Exchange Membrane Fuel Cells Using Data Driven State Space Models. Chemical Engineering Research and Design, 88, 861-874.
https://doi.org/10.1016/j.cherd.2009.12.001

[12]   Golbert, J. and Lewin, D.R. (2004) Model-Based Control of Fuel Cells: Regulatory Control. Journal of Power Sources, 135, 135-151.
https://doi.org/10.1016/j.jpowsour.2004.04.008

[13]   Wu, W., Xu, J.P. and Hwang, J.J. (2009) Multi-Loop Nonlinear Predictive Control Scheme for a Simplistic Hybrid Energy System. International Journal of Hydrogen Energy, 34, 3953-3964.
https://doi.org/10.1016/j.ijhydene.2009.02.060

[14]   Shokuhi-Rad, A., Jamali, A., Naghashzadegan, M., Nariman-zadeh, N. and Hajiloo, A. (2012) Optimum Pareto Design of Non-Linear Predictive Control with Multi-Design Variables for PEM Fuel Cell. International Journal of Hydrogen Energy, 37, 11244-11254.
https://doi.org/10.1016/j.ijhydene.2012.03.092

[15]   Gruber, J., Doll, M. and Bordons, C. (2009) Design and Experimental Validation of a Constrained MPC for the Air Feed of a Fuel Cell. Control Engineering Practice, 17, 874-885.
https://doi.org/10.1016/j.conengprac.2009.02.006

[16]   Ziogou, C., Papadopoulou, S., Georgiadis, M.C. and Voutetakis, S. (2013) On-Line Nonlinear Model Predictive Control of a PEM Fuel Cell System. Journal of Process Control, 23, 483-492.
https://doi.org/10.1016/j.jprocont.2013.01.011

[17]   Nguyen, T.V. and White, R.E. (1993) A Water and Heat Management Model for Proton Exchange Membrane Fuel Cells. Journal of the Electrochemical Society, 140, 2178-2186.
https://doi.org/10.1149/1.2220792

[18]   Yi, J.S. and Nguyen, T.V. (1998) An along-the-Channel Model for Proton Exchange Membrane Fuel Cells. Journal of the Electrochemical Society, 145, 1149-1159.
https://doi.org/10.1149/1.1838431

[19]   Um, S., Wang, C.Y. and Chen, K.S. (2000) Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells. Journal of the Electrochemical Society, 147, 4485-4493.
https://doi.org/10.1149/1.1394090

[20]   Wang, Z.H., Wang, C.Y. and Chen, K.S. (2001) Two-Phase Flow and Transport in the Air Cathode of Proton Exchange Membrane Fuel Cells. Journal of Power Sources, 94, 40-50.
https://doi.org/10.1016/S0378-7753(00)00662-5

[21]   Dutta, S., Shimpalee, S. and Van Zee, J.W. (2000) Three-Dimensional Numerical Simulation of Straight Channel PEM Fuel Cells. Journal of Applied Electrochemistry, 30, 135-146.
https://doi.org/10.1023/A:1003964201327

[22]   Berning, T., Lu, D. and Djilali, N. (2002) Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell. Journal of Power Sources, 106, 284-294.
https://doi.org/10.1016/S0378-7753(01)01057-6

[23]   Um, S. and Wang, C.Y. (2004) Three-Dimensional Analysis of Transport and Electrochemical Reactions in Polymer Electrolyte Fuel Cells. Journal of Power Sources, 125, 40-51.
https://doi.org/10.1016/j.jpowsour.2003.07.007

[24]   Bernardi, D.M. and Verbrugge, M.W. (1992) A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell. Journal of the Electrochemical Society, 139, 2477-2491.
https://doi.org/10.1149/1.2221251

[25]   Springer, T.E., Zawodzinski, T.A. and Gottesfeld, S. (1991) Polymer Electrolyte Fuel Cell Model. Journal of the Electrochemical Society, 138, 2334-2342.
https://doi.org/10.1149/1.2085971

[26]   Gurau, V., Liu, H. and Kakac, S. (1998) Two-Dimensional Model for Proton Exchange Membrane Fuel Cells. AIChE Journal, 44, 2410-2422.
https://doi.org/10.1002/aic.690441109

[27]   Hu, M., Gu, A., Wang, M., Zhu, X. and Yu, L. (2004) Three Dimensional, Two Phase Flow Mathematical Model for PEM Fuel Cell: Part I. Model Development. Energy Conversion and Management, 45, 1861-1882.
https://doi.org/10.1016/j.enconman.2003.09.022

[28]   Rowe, A. and Li, X. (2001) Mathematical Modeling of Proton Exchange Membrane Fuel Cells. Journal of Power Source, 102, 82-96.
https://doi.org/10.1016/S0378-7753(01)00798-4

[29]   Saengrung, A., Abtahi, A. and Zilouchian, A. (2007) Neural Network Model for a Commercial PEM Fuel Cell System. Journal of Power Sources, 172, 749-759.
https://doi.org/10.1016/j.jpowsour.2007.05.039

[30]   Sisworahardjo, N.S., Yalcinoz, T., El-Sharkh, M.Y. and Alam, M.S. (2010) Neural Network Model of 100 W Portable PEM Fuel Cell and Experimental Verification. International Journal of Hydrogen Energy, 35, 9104-9109.
https://doi.org/10.1016/j.ijhydene.2010.05.124

[31]   Chavez-Ramirez, A.U., Munoz-Guerrero, R., Duron-Torres, S.M., Ferraro, M., Brunaccini, G., Sergi, F., Antonucci, V. and Arriaga, L.G. (2010) High Power Fuel Cell Simulator Based on Artificial Neural Network. International Journal of Hydrogen Energy, 35, 12125-12133.
https://doi.org/10.1016/j.ijhydene.2009.09.071

[32]   Arce, A., Ramirez, D.R., del Real, A.J. and Bordons, C. (2007) Constrained Explicit Predictive Control Strategies for PEM Fuel Cell Systems. Proceedings of the 46th IEEE Conference on Decision and Control, Louisiana, LA, 6088-6093.
https://doi.org/10.1109/CDC.2007.4434556

[33]   Pukrushpan, J.T., Stefanopoulou, A.G. and Peng, H. (2004) Control of Fuel Cell Breathing. IEEE Control Systems Magazine, 24, 30-46.
https://doi.org/10.1109/MCS.2004.1275430

[34]   Thounthong, P. and Sethakul, P. (2007) Analysis of a Fuel Starvation Phenomenon of a PEM Fuel Cell. Power Conversion Conference, Nagoya, Japan, 731-738.
https://doi.org/10.1109/PCCON.2007.373048

[35]   del Real, A.J., Arce, A. and Bordons, C. (2007) Development and Experimental Validation of a PEM Fuel Cell Dynamic Model. Journal of Power Sources, 173, 310-324.
https://doi.org/10.1016/j.jpowsour.2007.04.066

[36]   Richalet, J. (1997) Techniques de l’ingénieur. Informatique Industrielle.

[37]   Murilo De Almeida Pinto, A. (2009) Contribution à la Commande Prédictive Non Linéaire pour les Systèmes à Dynamiques Rapides. PhD Thesis, Institut Polytechnique de Grenoble.

[38]   Alamir, M. (2006) Lecture Notes in Control and Information Science. Springer, London.

[39]   Amari, R., Alamir, M. and Tona, P. (2008) Proceedings of the IFAC World Congress, South Korea.

[40]   Damour, C., Benne, M., Kadjo, A., Rosini, S. and Grondin-Perez, B. (2013) Fast NMPC Scheme of a 10 kW Commercial PEMFC. International Journal of Hydrogen Energy, 38, 7407-74013.
https://doi.org/10.1016/j.ijhydene.2013.04.019

[41]   Becherif, M. and Hissel, D. (2010) MPPT of a PEMFC Based on Air Supply Control of the Motocompressor Group. International Journal of Hydrogen Energy, 35, 12521-12530.
https://doi.org/10.1016/j.ijhydene.2010.06.094

[42]   Santarelli, M.G., Torchioa, M.F., Cali, M. and Giaretto, V. (2007) Experimental Analysis of Cathode Flow Stoichiometry on the Electrical Performance of a PEMFC Stack. International Journal of Hydrogen Energy, 32, 710-716.
https://doi.org/10.1016/j.ijhydene.2006.08.008

[43]   Damour, C., Grondin, D., Benne, M., Grondin-Perez, B., Deseure, J. and Chabriat, J.P. (2012) Innovative Model-Based Control Approach of a Proton Exchange Membrane Fuel Cell System. Journal of Power Sources, 206, 144-152.
https://doi.org/10.1016/j.jpowsour.2012.01.096

 
 
Top