Back
 JAMP  Vol.8 No.2 , February 2020
Enhancing Mechanical Stability of Nano-Structured Anti-Reflection Coatings
Abstract: Periodic Nanostructured anti-reflection coatings (NALs) are a promising option for enhancing transmission of coherent light without inducing scattering. We’ve found that reducing the height of NALs below a critical value to enhance mechanical stability can highly reduce the transmission efficiency. Here, using Rigorous Couples Wave Analysis (RCWA), we find the minimum height for over 99% transmission and effect of height on transmission bandwidth. Then, during a one-step plasma etching, two samples with different heights have been generated and their efficiency is evaluated using RCWA.
Cite this paper: Mousavi, B. , Busani, T. , Zadeh, M. and Brueck, S. (2020) Enhancing Mechanical Stability of Nano-Structured Anti-Reflection Coatings. Journal of Applied Mathematics and Physics, 8, 247-258. doi: 10.4236/jamp.2020.82020.
References

[1]   Raut, H.K., Ganesh, V.A., Nair, A.S. and Ramakrishna, S. (2011) Anti-Reflective Coatings: A Critical, in-Depth Review. Energy & Environmental Science, 4, 3779-3804.
https://doi.org/10.1039/c1ee01297e

[2]   Bouhafs, D., Moussi, A., Chikouche, A. and Ruiz, J. (1998) Design and Simulation of Antireflection Coating Systems for Optoelectronic Devices: Application to Silicon Solar Cells. Solar Energy Materials and Solar Cells, 52, 79-93.
https://doi.org/10.1016/S0927-0248(97)00273-0

[3]   Zhao, J., Wang, A., Altermatt, P. and Green, M. (1995) Twenty-Four Percent Efficient Silicon Solar Cells with Double Layer Antireflection Coatings and Reduced Resistance Loss. Applied Physics Letters, 66, 3636-3638.
https://doi.org/10.1063/1.114124

[4]   Askar, K., Phillips, B.M., Fang, Y., Choi, B., Gozubenli, N., Jiang, P. and Jiang, B. (2013) Self-Assembled Self-Cleaning Broadband Anti-Reflection Coatings. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 439, 84-100.
https://doi.org/10.1016/j.colsurfa.2013.03.004

[5]   Xu, Y., Zhang, B., Fan, W.H., Wu, D. and Sun, Y.H. (2003) Sol-Gel Broadband Anti-Reflective Single-Layer Silica Films with High Laser Damage Threshold. Thin Solid Films, 440, 180-183.
https://doi.org/10.1016/S0040-6090(03)00828-9

[6]   Parizi, K.B., Peyvast, N., Mousavi, B.K., Mohajerzadeh, S. and Fathipour, M. (2010) Schottky Barrier Nano-MOSFET with an Asymmetrically Oxidized Source/Drain Structure. Solid-State Electronics, 54, 48-51.
https://doi.org/10.1016/j.sse.2009.09.010

[7]   Mousavi, B.K. (2018) Selected Applications of Silicon Nanopillar Arrays. Ph.D. Thesis, The University of New Mexico, Albuquerque, NM.

[8]   Roy, A., Talarposhti, M.R., Normile, S.J., Zenyuk, I.V., De Andrade, V., Artyushkova, K., Serov, A. and Atanassov, P. (2018) Nickel-Copper Supported on a Carbon Black Hydrogen Oxidation Catalyst Integrated into an Anion-Exchange Membrane Fuel Cell. Sustainable Energy & Fuels, 2, 2268-2275.
https://doi.org/10.1039/C8SE00261D

[9]   Liu, J., Talarposhti, M., Asset, T., Sabarirajan, D.C., Parkinson, D.Y., Atanassov, P. and Zenyuk, I.V. (2019) Understanding the Role of Interfaces for Water Management in PGM-free Electrodes in Polymer Electrolyte Fuel Cells. ACS Applied Energy Materials, 2, 3542-3553.
https://doi.org/10.1021/acsaem.9b00292

[10]   Mousavi, A.K., Abbas, K., Elahi, M.M.M., Lima, E., Moya, S., Butner, J.D., Pinon, D., Benga, A., Mousavi, B.K. and Leseman, Z.C. (2014) Pulsed Vacuum and Etching Systems: Theoretical Design Considerations for a Pulsed Vacuum System and Its Application to XeF 2 Etching of Si. Vacuum, 109, 216-222.
https://doi.org/10.1016/j.vacuum.2014.07.028

[11]   Mousavi, A., Kashamolla, M. and Leseman, Z. (2013) Improved Model for the Adhesion of μ Cantilevers: Theory and Experiments. Journal of Micromechanics and Microengineering, 23, Article ID: 115011.
https://doi.org/10.1088/0960-1317/23/11/115011

[12]   Kheyraddini Mousavi, A., Alaie, S. and Leseman, Z.C. (2016) Basic MEMS Actuators. In: Encyclopedia of Nanotechnology, Wiley, New York, 1-16.
https://doi.org/10.1007/978-94-007-6178-0_292-2

[13]   Mousavi, B.K., Mousavi, A.K., Hieber, T.J., Chen, J. and Leseman, Z.C. (2019) Mode II Adhesion Energy Analysis of Stiction-Failed Poly-Si Cantilevers Using a MEMS Load Cell. Journal of Micromechanics and Microengineering, 29, Article ID: 075013.
https://doi.org/10.1088/1361-6439/ab173e

[14]   Kheyraddini-Mousavi, A., Leseman, Z. and Kheyraddini-Mousavi, B. (2019) High Speed Michelson Interferometer Microscope. US Patent No. 10436570.

[15]   Karbassian, F., Mousavi, B.K., Rajabali, S., Talei, R., Mohajerzadeh, S. and Asl-Solei- mani, E. (2014) Formation of Luminescent Silicon Nanowires and Porous Silicon by Metal-Assisted Electroless Etching. Journal of Electronic Materials, 43, 1271-1279.
https://doi.org/10.1007/s11664-014-3051-3

[16]   Kheyraddini Mousavi, B., Behzadirad, M., Silani, Y., Karbasian, F., Kheyraddini Mousavi, A. and Mohajerzadeh, S. (2019) Metal-Assisted Chemical Etching of Silicon and Achieving Pore Sizes as Small as 30 nm by Altering Gold Thickness. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 37, Article ID: 061402.
https://doi.org/10.1116/1.5112776

[17]   Kumar, A., Chaliyawala, H., Siddhanta, S. and Barshilia, H.C. (2016) Broadband Quasi-Omnidirectional Subwavelength Nanoporous Antireflecting Surfaces on Glass Substrate for Solar Energy Harvesting Applications. Solar Energy Materials and Solar Cells, 145, 432-439.
https://doi.org/10.1016/j.solmat.2015.11.014

[18]   Bett, A., Eisenlohr, J., Höhn, O., Bläsi, B., Benick, J., Repo, P., Savin, H., Goldschmidt, J. and Hermle, M. (2014) Front Side Antireflection Concepts for Silicon Solar Cells with Diffractive Rear Side Structures. 29th European Photovoltaic Solar Energy Conference and Exhibition, Brussels, Belgium, 987-991.
https://doi.org/10.1117/12.2051667

[19]   Kang, G., Yoo, J., Ahn, J. and Kim, K. (2015) Transparent Dielectric Nanostructures for Efficient Light Management in Optoelectronic Applications. Nanotoday, 10, 22-47.
https://doi.org/10.1016/j.nantod.2015.01.008

[20]   Kim, J.J., Lee, Y., Kim, H.G., Choi, K.J., Kweon, H.S., Park, S. and Jeong, K.H. (2012) Biologically Inspired LED Lens from Cuticular Nanostructures of Firefly Lantern. Proceedings of the National Academy of Sciences of the United States of America, 109, 18674-18678.
https://doi.org/10.1073/pnas.1213331109

[21]   Schulze, M., Damm, M., Helgert, M., Kley, E.B., Nolte, S. and Tünnermann, A. (2012) Durability of Stochastic Antireflective Structures-Analyses on Damage Thresholds and Adsorbate Elimination. Optics Express, 20, 18348-18355.
https://doi.org/10.1364/OE.20.018348

[22]   Hobbs, D.S. and MacLeod, B.D. (2007) High Laser Damage Threshold Surface Relief Micro-Structures for Antireflection Applications. In: Laser-Induced Damage in Optical Materials: 2007, International Society for Optics and Photonics, Volume 6720, 67200L.
https://doi.org/10.1117/12.754223

[23]   Weng, B., Qiu, J., Yuan, Z., Larson, P.R., Strout, G.W. and Shi, Z. (2014) Responsivity Enhancement of Midinfrared PbSe Detectors Using CaF2 Nano-Structured Antireflective Coatings. Applied Physics Letters, 104, Article ID: 021109.
https://doi.org/10.1063/1.4861186

[24]   Hobbs, D.S. and MacLeod, B.D. (2005) Design, Fabrication, and Measured Performance of Anti-Reflecting Surface Textures in Infrared Transmitting Materials. In: Laser-Induced Damage in Optical Materials: 2005, International Society for Optics and Photonics, Orlando, FL, Volume 6720, 67200L.
https://doi.org/10.1117/12.604532

[25]   Kothary, P., Phillips, B.M., Leo, S.Y. and Jiang, P. (2016) Bioinspired Broadband Midwavelength Infrared Antireflection Coatings on Silicon. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 34, Article ID: 041807.
https://doi.org/10.1116/1.4958794

[26]   Zhou, L., Dong, X., Zhou, Y., Su, W., Chen, X., Zhu, Y. and Shen, S. (2015) Multiscale Micro-Nano Nested Structures: Engineered Surface Morphology for Efficient Light Escaping in Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 7, 26989-26998.
https://doi.org/10.1021/acsami.5b08575

[27]   Hobbs, D.S., MacLeod, B.D. and Sabatino, E. (2012) Continued Advancement of Laser Damage Resistant Optically Functional Microstructures. In: Laser-Induced Damage in Optical Materials: 2012, International Society for Optics and Photonics, Boulder, CO, Volume 8530, 85300O.
https://doi.org/10.1117/12.976909

[28]   Singh, V., Lin, P.T., Patel, N., Lin, H., Li, L., Zou, Y., Deng, F., Ni, C., Hu, J., Giammarco, J., et al. (2014) Mid-Infrared Materials and Devices on a Si Platform for Optical Sensing. Science and Technology of Advanced Materials, 15, Article ID: 014603.
https://doi.org/10.1088/1468-6996/15/1/014603

[29]   Du, Y., Liu, S., He, H., Jin, Y., Kong, F. and Guan, H. (2012) Laser-Induced Damage Properties of Antireflective Porous Glasses. Optics Communications, 285, 5512-5518.
https://doi.org/10.1016/j.optcom.2012.07.120

[30]   Thomas, I.M. (1986) High Laser Damage Threshold Porous Silica Antireflective Coating. Applied Optics, 25, 1481-1483.
https://doi.org/10.1364/AO.25.001481

[31]   Wang, Z., Zhang, R., Wang, S., Lu, M., Chen, X., Zheng, Y., Chen, L., Ye, Z., Wang, C. and Ho, K. (2015) Broadband Optical Absorption by Tunable Mie Resonances in Silicon Nanocone Arrays. Scientific Reports, 5, 7810.
https://doi.org/10.1038/srep07810

[32]   Mousavi, B.K., Mousavu, A.K., Busani, T., Zadeh, M.H. and Brueck, S. (2019) Nanostructured Anti-Reflection Coatings for Enhancing Transmission of Light. Journal of Applied Mathematics and Physics, 7, 3083-3100.
https://doi.org/10.4236/jamp.2019.712217

[33]   Mousavi, A.K., Atwater, M.A., Mousavi, B.K., Jalalpour, M., Taha, M.R. and Leseman, Z.C. (2014) Mechanical and Electrical Characterization of Entangled Networks of Carbon Nanofibers. Materials, 7, 4845-4853.
https://doi.org/10.3390/ma7064845

 
 
Top