Back
 JWARP  Vol.12 No.2 , February 2020
Piezometric Behavior in the Amazonian Lateritic Plateaus: Implications of Climate Changes to the Recharge of the Alter do Chão Aquifer System
Abstract: Potentiometric and pluviometric datasets were evaluated to understand the behavior of aquifer recharge in the bauxite plateaus in the Porto Trombetas region, Pará, Northern Brazil. The datasets are originated from three monitoring wells and an automatic climatological station. The local groundwater is related to the Alter do Chao Aquifer System, which despite being unconfined in valley regions, is semiconfined in the plateaus areas. The aquifer recharge occurs by direct infiltration and by leakage from the aquitard in the unconfined and semiconfined portions, respectively. Precipitation declined by 27% between 2002 and 2017. The rains accumulated between February and April are the most important for the recharge processes since this period is marked by higher absolute precipitation (up to 300 mm/month) and less deviation from the historical pattern. The recharge measured by the annual fluctuation of the water table also declined significantly in the 2010-2016 period. Statistical analysis demonstrates that in the case of a permanent climate change, expressed by rainfall reducing, the aquifer recharge would diminish at a non-linear rate, which is also expected for the base flow rates. In addition, data evaluation reveals that deforestation intensely decreases the recharge rates, as observed in the Aviso Plateau mining site. The results demonstrate that the water table fluctuations must be considered when modeling Global Climate Changes since the maintenance of surface flow rates (springs, lakes and streams) depends on aquifers baseflow. The result of the statistical analysis can be also applied to regions where climate patterns are strong seasonal, as the Savannah of Central Brazil.
Cite this paper: de Azevedo, J. , Campos, J. and Gomes, A. (2020) Piezometric Behavior in the Amazonian Lateritic Plateaus: Implications of Climate Changes to the Recharge of the Alter do Chão Aquifer System. Journal of Water Resource and Protection, 12, 102-119. doi: 10.4236/jwarp.2020.122007.
References

[1]   Fetter, C.W. (2001) Applied Hydrogeology. 4th Edition, Prentice-Hall, Inc., Upper Saddle River, 598 p.

[2]   Feitosa, F.A.C., Manoel Filho, J., Feitosa, E.C. and Demétrio, J.G.A. (2008) Hidrogeologia: conceitos e aplicaçoes. 3rd Edition, rev. e ampl. CPRM/LABHID, Rio de Janeiro, 812 p.

[3]   Hirata, R. and Conicelli, B.P. (2012) Groundwater Resources in Brazil: A Review of Possible Impacts Caused by Climate Change. Anais da Academia Brasileira de Ciências , 84, 297-312.
https://doi.org/10.1590/S0001-37652012005000037

[4]   Foster, S., Hirata, R., Gomes, D., D’edlia, M. and Paris, M. (2002) Groundwater Quality Protection: A Guide for Water Utilities, Municipal Authorities, and Environment Agencies. The World Bank, Washington DC, 103 p.
https://doi.org/10.1596/0-8213-4951-1

[5]   Rebouças, A. (2002) A política nacional de recursos hídricos e as águas subterraneas. águas Subterraneas, 16, 1-107.
https://doi.org/10.14295/ras.v16i1.1304

[6]   Giampá, C.E.Q. and Gonçalves, V.G. (2013) águas subterraneas e poços tubulares profundos. 2nd Edition, rev. e atualizada, Oficina de Textos, São Paulo, 496 p.

[7]   Green, T.R., Taniguchi, M., Kooi, H., Gurdak, J.J., Allen, D.M., Hiscock, K.M., Treidel, H. and Aureli, A. (2011) Beneath the Surface of Global Change: Impacts of Climate Change on Groundwater. Journal of Hydrology, 405, 532-560.
https://doi.org/10.1016/j.jhydrol.2011.05.002

[8]   Smerdon, B.D. (2017) A Synopsis of Climate Change Effects on Groundwater Recharge. Journal of Hydrology, 555, 125-128.
https://doi.org/10.1016/j.jhydrol.2017.09.047

[9]   Dragoni, W. and Sukhija, B.S. (2018) Climate Change and Groundwater: A Short Review. Geological Society, London, Special Publications, 288, 1-12.
https://doi.org/10.1144/SP288.1

[10]   Zhang, E., Yin, X., Xu, Z. and Yang, Z. (2018) Bottom-Up Quantification of Inter-Basin Water Transfer Vulnerability to Climate Change. Ecological Indicators, 92, 195-206.
https://doi.org/10.1016/j.ecolind.2017.04.019

[11]   Anyah, R.O., Forootan, E., Awange, J.L. and Khaki, M. (2018) Understanding Linkages between Global Climate Indices and Terrestrial Water Storage Changes over Africa Using GRACE Products. Science of the Total Environment, 635, 1405-1416.
https://doi.org/10.1016/j.scitotenv.2018.04.159

[12]   French, R.H., Jacobson, R.L. and Lyles, B.F. (1996) Threshold Precipitation Events and Potential Ground-Water Recharge. Journal of Hydraulic Engineering, 122, 573-578.
https://doi.org/10.1061/(ASCE)0733-9429(1996)122:10(573)

[13]   Wu, J., Zhang, R. and Yang, J. (1996) Analysis of Rainfall-Recharge Relationships. Journal of Hydrology, 177, 143-160.
https://doi.org/10.1016/0022-1694(95)02935-4

[14]   Kendy, E., Zhang, Y., Liu, C., Wang, J. and Steenhuis, T. (2004) Groundwater Recharge from Irrigated Cropland in the North China Plain: Case Study of Luancheng County, Hebei Province, 1949-2000. Hydrological Processes, 18, 2289-2302.
https://doi.org/10.1002/hyp.5529

[15]   Nimmo, J.R., Horowitz, C. and Mitchell, L. (2015) Discrete-Storm Water-Table Fluctuation Method to Estimate Episodic Recharge. Groundwater, 53, 282-292.
https://doi.org/10.1111/gwat.12177

[16]   Crosbie, R.S., McCallum, J.L., Walker, G.R. and Chiew, F.H. (2012) Episodic Recharge and Climate Change in the Murray-Darling Basin, Australia. Hydrogeology Journal, 20, 245-261.
https://doi.org/10.1007/s10040-011-0804-4

[17]   ANA Agência Nacional de águas (2005) Caderno de Recursos Hídricos: Disponibilidade e Demandas de Recursos Hídricos no Brasil. Coordenação Geral: Conejo, J.G.L. Coordenação Executiva: Mattos, B. A. ANA, Brasília, 123 p.

[18]   Marengo, J.A. (2008) Water and Climate Change. Estudos Avançados, 22, 83-96.
https://doi.org/10.1590/S0103-40142008000200006

[19]   Swann, A.L.S., Longo, M., Knox, R.G., Lee, E. and Moorcroft, P.R. (2015) Future Deforestation in the Amazon and Consequences for South American Climate. Agricultural and Forest Meteorology, 214, 12-24.
https://doi.org/10.1016/j.agrformet.2015.07.006

[20]   Gopel, J., de Barros Viana Hissa, L., Schüngel, J. and Schaldach, R. (2018) Sensitivity Assessment and Evaluation of a Spatially Explicit Land-Use Model for Southern Amazonia. Ecological Informatics, 48, 69-79.
https://doi.org/10.1016/j.ecoinf.2018.08.006

[21]   Panday, P.K., Coe, M.T., Macedo, M.N., Lefebvre, P. and Castanho, A.D.A. (2015) Deforestation Offsets Water Balance Changes Due to Climate Variability in the Xingu River in Eastern Amazonia. Journal of Hydrology, 523, 822-829.
https://doi.org/10.1016/j.jhydrol.2015.02.018

[22]   Wongchuig Correa, S., Paiva, R.C.D., Espinoza, J.C. and Collischonn, W. (2017) Multi-Decadal Hydrological Retrospective: Case Study of Amazon Floods and Droughts. Journal of Hydrology, 549, 667-684.
https://doi.org/10.1016/j.jhydrol.2017.04.019

[23]   Kurylyk, B.L. and MacQuarrie, K.T.B. (2013) The Uncertainty Associated with Estimating Future Groundwater Recharge: A Summary of Recent Research and an Example from a Small Unconfined Aquifer in a Northern Humid-Continental Climate. Journal of Hydrology, 492, 244-253.
https://doi.org/10.1016/j.jhydrol.2013.03.043

[24]   Goderniaux, P., Brouyère, S., Wildemeersch, S., Therrien, R. and Dassargues, A. (2015) Uncertainty of Climate Change Impact on Groundwater Reserves—Application to a Chalk Aquifer. Journal of Hydrology, 528, 108-121.
https://doi.org/10.1016/j.jhydrol.2015.06.018

[25]   Kundzewicz, Z.W., Krysanova, V., Benestad, R.E., Hov, Piniewski, M. and Otto, I.M. (2018) Uncertainty in Climate Change Impacts on Water Resources. Environmental Science and Policy, 79, 1-8.
https://doi.org/10.1016/j.envsci.2017.10.008

[26]   ANA Agência Nacional de águas (2015) Avaliação dos Aquíferos das Bacias Sedimentares da Província Hidrogeológica Amazonas no Brasil (escala 1:1.000.000) e Cidades Pilotos (escala 1:50.000): Hidrogeologia e Modelo Numérico da PHA Brasil. Volume 2. ANA, Brasília, 331 p.

[27]   Caputo, M.V. (1984) Stratigraphy, Tectonics, Paleoclimatology and Paleogeography of Northern Basin of Brazil. PhD Thesis, University of California, Santa Barbara, 170 p.

[28]   Cunha, P.R.C., Gonzaga, F.G., Coutinho, L.F.C. and Feijó, F.J. (1994) Bacia do Amazonas. Boletim de Geociências da Petrobras, 15, 227-251.

[29]   ANA Agência Nacional de águas (2005) Panorama da qualidade das águas subterraneas no Brasil. Coordenação Geral: Conejo, J. G. L. Coordenação Executiva: Costa, M.P., Zoby, J.L.G. ANA, Brasília, 80 p.

[30]   Souza, E.L., Galvão, P.H.F., Pinheiro, C.S.S., Baessa, M.P.M., Demétrio, J.G.A. and Brito, W.R.R. (2013) Síntese da hidrogeologia nas bacias sedimentares do Amazonas e do Solimoes: Sistemas Aquíferos Içá-Solimoes e Alter do Chão. Geologia USP. Série Científica, 13, 107-117.
https://doi.org/10.5327/Z1519-874X2013000100007

[31]   Caputo, M.V. and Soares, E.A.A. (2016) Eustatic and Tectonic Change Effects in the Reversion of the Transcontinental Amazon River Drainage System. Brazilian Journal of Geology, 46, 301-328.
https://doi.org/10.1590/2317-4889201620160066

[32]   Schobbenhaus, C., Campos, D.A., Derze, G.R. and Asmus, H.E. (1984) Geologia do Brasil. DNPM, Brasília, 501 p.

[33]   Mendes, A.C., Truckenbrod, W. and Nogueira, A.C.R. (2012) Análise faciológica da Formação Alter do Chão (Cretáceo, Bacia do Amazonas), próximo à cidade de óbidos, Pará, Brasil. Revista Brasileira de Geociências, 42, 39-57.
https://doi.org/10.25249/0375-7536.20124213957

[34]   Tancredi, A.C.F.N.S. (1996) Recursos hídricos subterraneos de Santarém: Fundamentos para uso e proteção. PhD Thesis, Pós-Graduação em Geologia e Geoquímica, Centro de Geociências/Universidade Federal do Pará, Belém, Pará, 154 p.

[35]   Aguiar, C.J.B., Horbe, M.A., Rosa Filho, S.F., Lopes, E.S., Moura, U.F., Andrade, N.M. and Diógenes, H.S. (2002) Carta hidrogeológica da cidade de Manaus. CPRM, Manaus, Internal Report, 1-4.

[36]   Souza, L.S.B. and Verma, O.P. (2006) Mapeamento de aquíferos na cidade de Manaus/AM (zonas norte e leste) através de perfilagem geofísica de poço e sondagem elétrica vertical. Revista de Geologia, 19, 111-127.
https://doi.org/10.1590/S0102-261X2006000300012

[37]   CPRM Serviço Geológico do Brasil (2012) Projeto Rede Integrada de Monitoramento das águas Subterraneas: Relatório diagnóstico Aquífero Alter do Chão no Estado do Amazonas, Bacia Sedimentar do Amazonas. CPRM, Belo Horizonte, 47 p.

[38]   Lopes, M.N.G., de Souza, E.B. and Ferreira, D.B.S. (2013) Climatologia regional da precipitação no estado do Pará. Revista Brasileira de Climatologia, 12, 84-112.
https://doi.org/10.5380/abclima.v12i1.31402

[39]   INMET Instituto Nacional de Meteorologia (2018) Normal Climatológica 1981-2010.
http://www.inmet.gov.br/portal/index.php?r=clima/normaisClimatologicas

[40]   Costa, M.L. (1991) Aspectos geológicos dos lateritos da Amazônia. Revista Brasileira de Geociências, 21, 146-160.
https://doi.org/10.25249/0375-7536.1991146160

[41]   Ker, J.C. (1997) Latossolos do Brasil: Uma revisão. Geonomos, 5, 17-40.
https://doi.org/10.18285/geonomos.v5i1.187

[42]   Horbe, A.M.C., Nogueira, A.C.R., Horbe, M.A., Costa, M.L. and Suguio, K. (2001) A lateritização na gênese das superfícies de aplanamento da região de Presidente Figueiredo-Balbina, nordeste do Amazonas. Contribuiçoes à Geologia da Amazônia, 2, 148-176.

[43]   Brandt Meio Ambiente (2007) Estudo de Impacto Ambiental—EIA: Mineração de bauxita nos platôs Bela Cruz, Aramã, Greig, Teófilo, Cipó e Monte Branco. Oriximiná, 301 p.

[44]   Costa, L.M., Cruz, G.S., Almeida, E.D.F. and Poellmann, H. (2014) On the Geology, Mineralogy and Geochemistry of the Bauxite-Bearing Regolith in the Lower Amazon Basin: Evidence of Genetic Relationships. Journal of Geochemical Exploration, 146, 58-74.
https://doi.org/10.1016/j.gexplo.2014.07.021

[45]   Rossetti, D.F. (2014) The Role of Tectonics in the Late Quaternary Evolution of Brazil’s Amazonian Landscape. Earth-Science Reviews, 139, 362-389.
https://doi.org/10.1016/j.earscirev.2014.08.009

[46]   INMET, Instituto Nacional de Meteorologia (2018) Balanço Hídrico Climático.
http://www.inmet.gov.br/portal/index.php?r=agrometeorologia/balancoHidricoClimatico

[47]   IBGE Instituto Brasileiro de Geografia e Estatística (1992) Manual Técnico da Vegetação Brasileira. Série Manuais Técnicos em Geociências 1. IBGE, Rio de Janeiro, 94 p.

[48]   IBGE Instituto Brasileiro de Geografia e Estatística (2012) Manual Técnico da Vegetação Brasileira. Série Manuais Técnicos em Geociências 1. 2nd Edition, revista e ampliada. IBGE, Rio de Janeiro, 275 p.

[49]   IBAMA Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (2001) Plano de manejo da Floresta Nacional Saracá-Taquera. Mineração Rio do Norte. IBAMA, Curitiba. (paginado por capítulo)

[50]   IBAMA Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (2004) Plano de manejo da Reserva Biológica do Rio Trombetas. IBAMA, Brasília, 556 p.

[51]   MRN Mineração Rio do Norte (2011) Relatórios semestrais de monitoramento ambiental da Mineração Rio do Norte—Relatório Integral Ano 2010— 03MRN0708T REV01. STCP Engenharia de Projetos, Curitiba, 852 p.

[52]   Healy, R.W. (2010) Estimating Groundwater Re-charge. Cambridge University Press, New York, 245 p.
https://doi.org/10.1017/CBO9780511780745

[53]   Azevedo, J.H. (2019) Fluxos subterraneos e recarga do Sistema Aquífero Alter do Chão em lateritos amazônicos: Estudo de caso em Porto Trombetas, Pará. PhD Thesis, University of Brasília, Brasília, 139.

[54]   Reichardt, K. (1990) A água em sistemas agrícolas. Editora Manole Ltda, São Paulo, 188 p.

[55]   Fiori, J.P.O., Campos, J.E.G. and Almeida, L. (2010) Variabilidade da condutividade hidráulica das principais classes de solo do estado de Goiás. Geociências (São Paulo), 29, 229-235.

[56]   Porporato, A., O’dorico, P., Laio, F., Ridolfi, L. and Rodriguez-Iturbe, I. (2002) Ecohydrology of Water-Controlled Ecosystems. Advances in Water Resources, 25, 1335-1348.
https://doi.org/10.1016/S0309-1708(02)00058-1

[57]   Wahnfried, I. and Soares, E.A.A. (2012) água subterranea na Amazônia: Importancia, estado atual do conhecimento e estratégias de pesquisa. Ciência & Ambiente, 44, 29-40.

 
 
Top