The Number of Minimum Roman and Minimum Total Dominating Sets for Some Chessboard Graphs

Show more

References

[1] Watkins (2004) Across the Board: The Mathematics of Chessboard Problems. Princeton University Press, Princeton and Oxford.

[2] Chaluvaraju, B. and Chaitra, V. (2012) Roman Domination in Complementary Prism Graphs. International Journal of Mathematical Combinatorics, 2, 24-31.

[3] Cockayne, E.J., Dreyer Jr., P.A., Hedetniemi, S.M. and Hedetniemi, S.T. (2004) Roman Domination in Graphs. Discrete Mathematics, 178, 11-22.

[4] Favaron, O., et al. (2009) On the Roman Domination Number of a Graph. Discrete Mathematics, 309, 3447-3451.

[5] Fu, X.L., et al. (2009) Roman Domination in Regular Graphs. Discrete Mathematics, 309, 1528-1537.

[6] Henning, M.A. and Hedetniemi, S.T. (1998) Defending the Roman Empire—A New Strategy. Discrete Mathematics, 266, 239-251.

[7] Henning, M.A. (2003) Defending the Roman Empire from Multiple Attacks. Discrete Mathematics, 271, 101-115.

[8] Pushpam, P.R.L. and Malini Mai, T.N.M. (2000) Roman Domination in Unicyclic Graphs. Journal of Discrete Mathematical Sciences and Crytography, 15, 201-213.

[9] Muddebihal, M.H., Basavarajappa, D. and Sedamkar, A.R. (2010) Roman Domination in Line Graphs. Canadian Journal on Science and Engineering Mathematics, 1, 69-79.

[10] Cockayne, E.J., Gamble, B. and Shepherd, B. (1986) Domination Parameters for the Bishop’s Graph. Discrete Mathematics, 58, 221-227.

[11] Henning, M.A. and Yeo, A. (2013) Total Domination in Graphs. Springer-Verlag, New York.

[12] Burchett, P.A. (2005) Paired and Total Domination on the Queen’s Graph. MS Thesis, East Tennessee State University, Johnson City.

[13] Burchett, P.A. (2006) Paired, Total and Connected Domination on the Queen’s Graph. Congressus Numerantium, 178, 207-222.