Back
 ENG  Vol.12 No.1 , January 2020
Optimum Autofrettage Pressure of Hydrogen Valve Using Finite Element and Fatigue Analysis
Abstract: The presented article shows an estimation method of optimum autofrettage pressure taking into consideration subsequent cyclic loading. An autofrettage process is used in pressure vessel applications for strength improvement. The process relies on applying massive pressure that causes internal portions of the part to yield plastically, resulting in internal compressive residual stresses when pressure is released. Later applied working pressure (much lower than autofrettage pressure) creates stress reduced by the residual compressive stress improving the structural performance of the pressure vessels. The optimum autofrettage pressure is a load that maximizes the fatigue life of the structure at the working load. The estimation method of that pressure of a hydrogen valve is the subject of the presented work. Finite element and fatigue analyses were employed to investigate the presented problem. An automated model was developed to analyze the design for various autofrettage pressures. As the results of the procedure, the optimum autofrettage pressure is determined. The research has shown that the developed method can profitably investigate the complex parts giving the autofrettage load that maximizes the fatigue life. The findings suggest that the technique can be applied to a large group of products subjected to the autofrettage process.
Cite this paper: Kedziora, S. and Cao, T. (2020) Optimum Autofrettage Pressure of Hydrogen Valve Using Finite Element and Fatigue Analysis. Engineering, 12, 1-24. doi: 10.4236/eng.2020.121001.
References

[1]   Jacob, L. (1907) La Résistance et l’équilibre élastique des tubes frettés, Meml. L’artillerie Nav. (In French)

[2]   Lamé, G. (1852) Leçons sur la théorie mathématique: De l’élasticité des corps solides. Paris. (In French)

[3]   Gibson, M.C., Hameed, A. and Hetherington, J.G. (2014) Investigation of Residual Stress Development during Swage Autofrettage, Using Finite Element Analysis. Journal of Pressure Vessel Technology, 136, Article ID: 021206.
https://doi.org/10.1115/1.4025968

[4]   Wagner, L. (2002) Shot Peening. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

[5]   Çandar, H. and Filiz, H. (2017) Optimum Autofrettage Pressure for a High Pressure Cylinder of a Waterjet Intensifier Pump. Universal Journal of Engineering Science, 5, 44-55.

[6]   Zhu, R. and Yang, J. (1998) Autofrettage of Thick Cylinders. International Journal of Pressure Vessels and Piping, 75, 443-446.
https://doi.org/10.1016/S0308-0161(98)00030-1

[7]   Wahi, N., Ayob, A. and Elbasheer, M.K. (2011) Effect of Optimum Autofrettage on Pressure Limits of Thick-Walled Cylinder. International Journal of Environmental Science and Development, 2, 329-333.
https://doi.org/10.7763/IJESD.2011.V2.146

[8]   Bauschinger, J. (1886) über die Veränderung der Elastizitätsgrenze und die Festigkeit des Eisens und Stahls durch Strecken und Quetschen, durch Erwärmen und Abkühlen und durch oftmals wiederholte Bean-spruchungen. On the Change of the Elastic Limit and Strength of Iron and st, 1886, Mittheilungen, 13, 1-62. (In German)

[9]   Thumser, R., Bergmann, J.W. and Vormwald, M. (2002) Residual Stress Fields and Fatigue Analysis of Autofrettaged Parts. International Journal of Pressure Vessels and Piping, 79, 113-117.
https://doi.org/10.1016/S0308-0161(01)00137-5

[10]   Sellen, S., Maas, S., Andreas, T., Plapper, P., Zürbes, A. and Becker, D. (2016) Design Rules for Autofrettage of an Aluminum Valve Body. Fatigue & Fracture of Engineering Materials & Structures, 39, 68-78.
https://doi.org/10.1111/ffe.12328

[11]   Okorokov, V., MacKenzie, D., Gorash, Y., Morgantini, M., van Rijswick, R. and Comlekci, T. (2018) High Cycle Fatigue Analysis in the Presence of Autofrettage Compressive Residual Stress. Fatigue & Fracture of Engineering Materials & Structures, 41, 2305-2320.
https://doi.org/10.1111/ffe.12866

[12]   Lopez, Z. and Fatemi, A. (2012) A Method of Predicting Cyclic Stress-Strain Curve from Tensile Properties for Steels. Materials Science and Engineering: A, 556, 540-550.
https://doi.org/10.1016/j.msea.2012.07.024

[13]   Mac, T., Fonseca Junior, I. and Magnabosco, R. (2012) Evaluation of Methods for Estimating Fatigue Properties Applied to Stainless Steels and Aluminum Alloys. Tecnologia em Metalurgia, Materiais e Mineração, São Paulo, 9, 284-293.
https://doi.org/10.4322/tmm.2012.040

[14]   ANSYS (2018) Academic Research Mechanical, Release 19.

[15]   HBM Prenscia (2018) nCode DesignLife—CAE fatigue analysis software—nCode Release 2018.

[16]   Boardman, B. (1990) Fatigue Resistance of Steels. In: ASM Handbook, Volume 1: Properties and Selection: Irons, Steels, and High-Performance Alloys, 10th Edition, ASM International, 673-688.
https://doi.org/10.31399/asm.hb.v01.a0001038

[17]   Cao, T.B. and Kedziora, S. (2019) Innovative Designs of an In-Tank Hydrogen Valve towards Direct Metal Laser Sintering Compatibility and Fatigue Life Enhancement. Structural and Multidisciplinary Optimization, 56, 2319-2340.
https://doi.org/10.1007/s00158-018-2174-1

[18]   Brown, M.W. and Miller, K.J. (1973) A Theory for Fatigue Failure under Multiaxial Stress-Strain Conditions. Proceedings of the Institution of Mechanical Engineers, 187, 745-755.
https://doi.org/10.1243/PIME_PROC_1973_187_161_02

[19]   Sellen, S. (2014) Untersuchung der Ermüdungsfestigkeit von Komplexen Innendruckbelasteten Aluminiumgeometrien und der Lebensdauersteigerung durch Autofrettage. PhD Thesis, University of Luxembourg, Luxembourg. (In German)
http://hdl.handle.net/10993/20678

[20]   ASME (2012) Companion Guide to the ASME Boiler & Pressure Vessel Code. Volume 2, ASME, 4th Edition, ASME Press, New York.

[21]   Wang, C.H. and Brown, M.W. (1996) Life Prediction Techniques for Variable Amplitude Multiaxial Fatigue Part 1: Theories. Journal of Engineering Materials and Technology, 118, 367.
https://doi.org/10.1115/1.2806821

 
 
Top