MSA  Vol.11 No.1 , January 2020
Thermal and Crystallization Behavior of PLA/PLLA-Grafting Cellulose Nanocrystal
Abstract: PLLA-modified cellulose nanocrystals (CNC) were produced from commercial CNC by tin-catalyzed polymerization of lactide in presence of CNC. FTIR spectroscopy demonstrated that the result of the reaction produced the grafting of PLLA chains onto CNC surface (CNC-g-PLLA). Films of poly(lactic acid) (PLA) and PLA/CNC nanocomposites (with non-modified CNC and CNC-g-PLLA) containing 0.5% and 5% (w/w) of the nanofillers were prepared by casting in chloroform solution and the crystallization behavior and thermal properties investigated. All nano-composites had similar thermal stability when analyzed by TGA analyses under an inert nitrogen atmosphere. Addition of both types of CNC influenced crystallization, the higher crystallization rate being observed for 5% (w/w) CNC. Nanocomposites with 5% (w/w) CNC-g-PLLA had the strain resistance of PLA improved in the rubbery state. PLLA-modification of CNC surface increased the crystallization of PLA in PLA/CNC nanocomposites and improved the rigidity at temperatures above the glass transition, properties which are desirable for hot drinking application.
Cite this paper: Inácio, E. , Souza, D. and Dias, M. (2020) Thermal and Crystallization Behavior of PLA/PLLA-Grafting Cellulose Nanocrystal. Materials Sciences and Applications, 11, 44-57. doi: 10.4236/msa.2020.111004.

[1]   Luzi, F., Dominici, F., Armentano, I., Fortunati, E., Burgos, N., Fiori, S. and Torre, L. (2019) Combined Effect of Cellulose Nanocrystals, Carvacrol and Oligomeric Lactic Acid in PLA_PHB Polymeric Films. Carbohydrate Polymers, 223, Article ID: 115131.

[2]   Kalita, N.K., Nagar, M.K., Mudenur, C., Kalamdhad, A. and Katiyar, V. (2019) Biodegradation of Modified Poly(Lactic Acid) Based Biocomposite Films under Thermophilic Composting Conditions. Polymer Testing, 76, 522-536.

[3]   Shojaeiarani, J., Bajwa, D.S., Stark, N.M. and Bajwa, S.G. (2019) Rheological Properties of Cellulose Nanocrystals Engineered Polylactic Acid Nanocomposites. Composites Part B: Engineering, 161, 483-489.

[4]   Mathew, P., Oksman, K. and Sain, M. (2006) The Effect of Morphology and Chemical Characteristics of Cellulose Reinforcements on the Crystallinity of Polylactic Acid. Journal of Applied Polymer Science, 101, 300-310.

[5]   Lizundia, E., Vilas, J. and León, L. (2015) Crystallization, Structural Relaxation and Thermal Degradation in Poly(L-Lactide)/Cellulose Nanocrystal Renewable Nanocomposites. Carbohydrate Polymers, 123, 256-265.

[6]   Lizundia, E., Fortunati, E., Dominici, F., Vilas, J.L., León, L.M., Armentano, I. and Kenny, J.M. (2016) PLLA-Grafted Cellulose Nanocrystals: Role of the CNC Content and Grafting on the PLA Bionanocomposite Film Properties. Carbohydrate Polymers, 142, 105-113.

[7]   Wu, H., Nagarajan, S., Zhou, L., Duan, Y. and Zhang, J. (2016) Synthesis and Characterization of Cellulose Nanocrystal-Graft-Poly(D-Lactide) and Its Nanocomposite with Poly(L-Lactide). Polymer, 103, 365-375.

[8]   Miao, C. and Hamad, W.Y. (2016) In-Situ Pol-ymerized Cellulose Nanocrystals (CNC)-Poly(L-Lactide)(PLLA) Nanomaterials and Applications in Nanocomposite Processing. Carbohydrate Polymers, 153, 549-558.

[9]   De Paula, E., Roig, F., Mas, A., Habas, J., Mano, V., Pereira, F. and Robin, J. (2016) Effect of Surface-Grafted Cellulose Nanocrystals on the Thermal and Mechanical Properties of PLLA Based Nanocomposites. European Polymer Journal, 84, 173-187.

[10]   Ioelovich, M. (2012) Optimal Conditions for Isolation of Nano-crystalline Cellulose Particles. Nanoscience and Nanotechnology, 2, 9-13.

[11]   Graupner, N., Herrmann, A. and Müssig, J. (2009) Natural and Man-Made Cellulose Fibre-Reinforced Poly (Lactic Acid) (PLA) Composites: An Overview about Mechanical Characteristics and Application Areas. Composites Part A: Applied Science and Manufacturing, 40, 810-821.

[12]   Frone, A., Berlioz, S., Chailan, J. and Panaitescu, D. (2013) Morphology and Thermal Properties of PLA-Cellulose Nanofibers Composites. Carbohydrate Polymers, 91, 377-384.

[13]   Chen, X., Kalish, J. and Hsu, L. (2011) Structure Evolution of α’-Phase Poly (Lactic Acid). Journal of Polymer Science Part B: Polymer Physics, 49, 1446-1454.

[14]   Leszczyńska, A., Radzik, P., Harazna, K. and Pielichowski, K. (2018) Thermal Stability of Cellulose Nanocrystals Prepared by Succinic Anhydride Assisted Hydrolysis. Thermochimica Acta, 663, 145-156.

[15]   Cetin, N., Tingaut, P., Ozmen, N., Henry, N., Harper, D., Dadmun, M. and Sebe, G. (2009) Acetylation of Cellulose Nanowhiskers with Vinyl Acetate under Moderate Conditions. Macromolecular Bioscience, 9, 997-1003.

[16]   Tian, C., Yi, J., Wu, Y., Wu, Q., Qing, Y. and Wang, L. (2016) Preparation of Highly Charged Cellulose Nanofibrils Using High-Pressure Homogenization Coupled with Strong Acid Hydrolysis Pretreatments. Carbohydrate Polymers, 136, 485-492.

[17]   Fragal, E.H., Cellet, T.S., Fragal, V.H., Companhoni, M.V., Ueda-Nakamura, T., Muniz, E.C. and Rubira, A.F. (2016) Hybrid Materials for Bone Tissue Engineering from Biomimetic Growth of Hydroxiapatite on Cellulose Nanowhiskers. Carbohydrate Polymers, 152, 734-746.

[18]   Spinella, S., Re, G.L., Liu, B., Dorgan, J., Habibi, Y., Leclere, P. and Gross, R.A. (2015) Polylactide/Cellulose Nanocrystal Nanocomposites: Efficient Routes for Nanofiber Modification and Effects of Nanofiber Chemistry on PLA Reinforcement. Polymer, 65, 9-17.