[1] REN21. Renewables Global Futures Report: Great Debates towards 100% Renewable Energy.
https://www.ren21.net/reports/global-futures-report
[2] IRENA. Renewable Energy Statistics 2019.
https://www.irena.org/Statistics/View-Data-by-Topic/Capacity-and-Generation/Regional-Trends
[3] Weisser, D. (2003) A Wind Energy Analysis of Grenada: An Estimation Using the “Weibull” Density Function. Renewable Energy, 28, 1803-1812.
https://doi.org/10.1016/S0960-1481(03)00016-8
[4] Mohammadi, K., Alavi, O., Mostafaeipour, A., Goudarzi, N. and Jalilvand, M. (2016) Assessing Different Parameters Estimation Methods of Weibull Distribution to Compute Wind Power Density. Energy Conversion and Management, 108, 322-335.
https://doi.org/10.1016/j.enconman.2015.11.015
[5] Lu, L., Yang, H.X. and Burnett, J. (2002) Investigation on Wind Power Potential on Hong Kong Islands—An Analysis of Wind Power and Wind Turbine Characteristics. Renewable Energy, 27, 1-12.
https://doi.org/10.1016/S0960-1481(01)00164-1
[6] Seguro, J.V. and Lambert, T.W. (2000) Modern Estimation of the Parameters of the Weibull Wind Speed Distribution for Wind Energy Analysis. Journal of Wind Engineering and Industrial Aerodynamics, 85, 75-84.
https://doi.org/10.1016/S0167-6105(99)00122-1
[7] Persaud, S., Flynn, D. and Fox, B. (1999) Potential for Wind Generation on the Guyana Coastlands. Renewable Energy, 18, 175-189.
https://doi.org/10.1016/S0960-1481(98)00793-9
[8] De, A.R. and Musgrove, L. (1988) The Optimization of Hybrid Energy Conversion Systems Using the Dynamic Programming Model—Rapsody. International Journal of Energy Research, 12, 447-457.
https://doi.org/10.1002/er.4440120309
[9] Katinas, V., Marciukaitis, M., Gecevicius, G. and Markevicius, A. (2017) Statistical Analysis of Wind Characteristics Based on Weibull Methods for Estimation of Power Generation in Lithuania. Renewable Energy, 113, 190-201.
https://doi.org/10.1016/j.renene.2017.05.071
[10] Brano, V.L., Orioli, A., Ciulla, G. and Culotta, S. (2011) Quality of Wind Speed Fitting Distributions for the Urban Area of Palermo, Italy. Renewable Energy, 36, 1026-1039.
https://doi.org/10.1016/j.renene.2010.09.009
[11] Aukitino, T., Khan, M.G.M. and Ahmed, M.R. (2017) Wind Energy Resource Assessment for Kiribati with a Comparison of Different Methods of Determining Weibull Parameters. Energy Conversion and Management, 151, 641-660.
https://doi.org/10.1016/j.enconman.2017.09.027
[12] Fyrippis, I., Axaopoulos, P.J. and Panayiotou, G. (2010) Wind Energy Potential Assessment in Naxos Island, Greece. Applied Energy, 87, 577-586.
https://doi.org/10.1016/j.apenergy.2009.05.031
[13] Islam, M.R., Saidur, R. and Rahim, N.A. (2011) Assessment of Wind Energy Potentiality at Kudat and Labuan, Malaysia Using Weibull Distribution Function. Energy, 36, 985-992.
https://doi.org/10.1016/j.energy.2010.12.011
[14] Celik, A.N. (2004) A Statistical Analysis of Wind Power Density Based on the Weibull and Rayleigh Models at the Southern Region of Turkey. Renewable Energy, 29, 593-604.
https://doi.org/10.1016/j.renene.2003.07.002
[15] Ali, S., Lee, S.-M. and Jang, C.-M. (2018) Statistical Analysis of Wind Characteristics Using Weibull and Rayleigh Distributions in Deokjeok-Do Island-Incheon, South Korea. Renewable Energy, 123, 652-663.
https://doi.org/10.1016/j.renene.2018.02.087
[16] Khahro, S.F., Tabbassum, K., Soomro, A.M., Dong, L. and Liao, X.Z. (2014) Evaluation of Wind Power Production Prospective and Weibull Parameter Estimation Methods for Babaurband, Sindh Pakistan. Energy Conversion and Management, 78, 956-967.
https://doi.org/10.1016/j.enconman.2013.06.062
[17] Ahmed, S.A. (2013) Comparative Study of Four Methods for Estimating Weibull Parameters for Halabja, Iraq. International Journal of Physical Sciences, 8, 186-192.
[18] Mohammadi, K. and Mostafaeipour, A. (2013) Using Different Methods for Comprehensive Study of Wind Turbine Utilization in Zarrineh, Iran. Energy Conversion and Management, 65, 463-470.
https://doi.org/10.1016/j.enconman.2012.09.004
[19] Chang, T.P. (2011) Performance Comparison of Six Numerical Methods in Estimating Weibull Parameters for Wind Energy Application. Applied Energy, 88, 272-282.
https://doi.org/10.1016/j.apenergy.2010.06.018
[20] Justus, C.G., Hargraves, W.R. and Yalcin, A. (1976) Nationwide Assessment of Potential Output from Windpowered Generators. Journal of Applied Meteorology, 15, 673-678.
https://doi.org/10.1175/1520-0450(1976)015<0673:NAOPOF>2.0.CO;2
[21] Lysen, E.H. (1983) Introduction to Wind Energy. Consultancy Services Wind Energy Developing Countries.
[22] Li, M.-F., Tang, X.-P., Wu, W. and Liu, H.-B. (2013) General Models for Estimating Daily Global Solar Radiation for Different Solar Radiation Zones in Mainland China. Energy Conversion and Management, 70, 139-148.
https://doi.org/10.1016/j.enconman.2013.03.004
[23] Legates, D.R. and McCabe Jr., G.J. (1999) Evaluating the Use of “Goodness-of-Fit” Measures in Hydrologic and Hydroclimatic Model Validation. Water Resources Research, 35, 233-241.
https://doi.org/10.1029/1998WR900018
[24] Willmott, C.J. (1981) On the Validation of Models. Physical Geography, 2, 184-194.
https://doi.org/10.1080/02723646.1981.10642213
[25] Jamieson, P.D., Porter, J.R. and Wilson, D.R. (1991) A Test of the Computer Simulation Model ARCWHEAT1 on Wheat Crops Grown in New Zealand. Field Crops Research, 27, 337-350.
https://doi.org/10.1016/0378-4290(91)90040-3