MSA  Vol.11 No.1 , January 2020
Wettability, Thermal and Sliding Behavior of Thermally Sprayed Fly Ash Premixed Red Mud Coatings on Mild Steel
Abstract: The present experimental work reveals the surface characteristics like wettability, thermal and sliding wear behaviour of plasma-sprayed red mud (RM) coatings premixed with fly ash (FA). Varying weight % of FA (10, 20, 30 and 40)—RM composite powder is used as precursor for coating. Atmospheric plasma-sprayed coatings are developed at different operating power like 5 kW, 10 kW, 15 kW and 20 kW separately on mild steel substrate. Tribological behaviour viz. sliding wear properties are studied at distinct operating load (10N, 15N, 20N, 25N), speed (40 rpm, 50 rpm, 60 rpm, 70 rpm) and track diameter of 100 mm using a pin on disc tribometer for duration of 30 minutes with 3 minute gap period for each experiment. The DSC and TGA experiments of the coatings are performed to understand the high temperature application areas. The contact angle result signifies the wettability of the prepared coatings is principally a function of composition. The reaction of surface roughness and spraying power is in-significant on water contact angle (WCA). In conclusion, the sliding wear experiments are optimized by Taguchi method to ascertain the influencing parameter on wear.
Cite this paper: Sutar, H. , Mishra, B. , Murmu, R. , Patra, S. , Patra, S. , Mishra, S. and Roy, D. (2020) Wettability, Thermal and Sliding Behavior of Thermally Sprayed Fly Ash Premixed Red Mud Coatings on Mild Steel. Materials Sciences and Applications, 11, 12-26. doi: 10.4236/msa.2020.111002.

[1]   Cai, Y., Coyle, T.W., Azimi, G. and Mostaghimi, J. (2016) Superhydrophobic Ceramic Coatings by Solution Precursor Plasma Spray. Scientific Reports, 6, Article No. 24670.

[2]   Oksa, M., Turunen, E., Sohunen, T., Varis, T. and Hannula, S.P. (2011) Optimization and Characterization of High Velocity Oxy-Fuel Sprayed Coatings: Techniques, Materials, and Applications. Coatings, 1, 17-52.

[3]   Padture, N.P., Gell, M. and Jordan, E.H. (2002) Thermal Barrier Coatings for Gas-Turbine Engine Applications. Science, 296, 280-284.

[4]   Komarov, P., Celko, L., Jech, D., Papula, M., Slamecka, K., Horynova, M., Klakurkova, L. and Kaiser, J. (2017) Investigations of Wettability of Wear Resistant Coatings Produced by Atmospheric Plasma Spraying. Solid State Phenomena, 270, 230-235.

[5]   Asmatulu, R., Khan, W.S., Reddy, R.J. and Ceylan, M. (2014) Synthesis and Analysis of Injection-Molded Nanocomposites of Recycled High-Density Polyethylene Incorporated with Graphene Nanoflakes. Polymer Composites, 36, 1565-1573.

[6]   Nuraje, N., Khan, W.S., Lei, Y., Ceylan, M. and Asmatulu, R. (2012) Superhydrophobic Electrospun Nanofibers. Journal of Materials Chemistry A, 1, 1929-1946.

[7]   Xu, P.Y., Coyle, T.W., Pershin, L. and Mostaghimi, J. (2018) Superhydrophobic Ceramic Coating: Fabrication by Solution Precursor Plasma Spray and Investigation of Wetting Behaviour. Journal of Colloid and Interface Science, 523, 35-44.

[8]   Bahgat Radwan, A., Abdullah, A. and Alnuaimi, N. (2017) Recent Advances in Corrosion Resistant Superhydrophobic Coatings. Corrosion Reviews, 36, 127-153.

[9]   Zhang, F., Robinson, B.W., Villiers-Lovelock, H.D., Wood, R.J. and Wang, S.C. Wettability of Hierarchically-Textured Ceramic Coatings Produced by Suspension HVOF Spraying. Journal of Materials Chemistry A, 3, 13864-13873.

[10]   Nishino, T., Meguro, M., Nakamae, K., Matsushita, M. and Ueda, Y. (1999) The Lowest Surface Free Energy Based on CF3 Alignment. Langmuir, 15, 4321-4323.

[11]   Gao, L. and McCarthy, T.J. (2007) How Wenzel and Cassie Were Wrong. Langmuir, 23, 3762-3765.

[12]   Shirtcliffe, N.J., McHale, G., Newton, M.I. and Perry, C.C. (2005) Wetting and Wetting Transitions on Copper-Based Super-Hydrophobic Surfaces. Langmuir, 21, 937-943.

[13]   Nosonovsky, M. and Bhushan, B. (2008) Roughness-Induced Superhydrophobicity: A Way to Design Non-Adhesive Surfaces. Journal of Physics: Condensed Matter, 20, Article ID: 225009.

[14]   Vedantam, S. and Panchagnula, M.V. (2007) Phase Field Modeling of Hysteresis in Sessile Drops. Physical Review Letters, 99, Article ID: 176102.

[15]   Sutar, H., Mishra, S.C., Sahoo, S.K., Chakraverty, A.P. and Maharana, H.S. (2014) Progress of Red Mud Utilization: An Overview. American Chemical Science Journal, 4, 255-279.

[16]   Panwar, N., Poonia, R.P., Singh, G., Dabral, R. and Chauhan, A. (2017) Effect of Lubrication on Sliding Wear of Red Mud Particulate Reinforced Aluminium Alloy 6061. Tribology in Industry, 39, 307-318.

[17]   Dabral, R., Panwar, N., Dang, R., Poonia, R.P. and Chauhan, A. (2017) Wear Response of Aluminium 6061 Composite Reinforced with Red Mud at Elevated Temperature. Tribology in Industry, 39, 391-399.

[18]   Prasad, N., Sutar, H., Mishra, H.C., Sahoo, S.K. and Acharya, S.K. (2013) Dry Sliding Wear Behavior Aluminium Matrix Composite Using Red Mud an Industrial Waste. International Research Journal of Pure and Applied Chemistry, 3, 59-74.

[19]   Panwar, N., Saini, S. and Chauhan, A. (2019) Frictional Study of Al 6061 Red-Mud Composite under the Influence of Different Process Parameters. Tribology in Industry, 41, 199-211.

[20]   Chinta, N.D., Selvaraj, N. and Mahesh, M. (2016) Dry Sliding Wear Behaviour of Aluminum Red Mud Tungsten Carbide Hybrid Metal Matrix Composites. IOP Conference Series: Materials Science and Engineering, 149, Article ID: 012094.

[21]   Acharya, S.K., Dikshit, V. and Mishra, P. (2008) Erosive Wear Behaviour of Redmud Filled Metal Matrix Composite. Journal of Reinforced Plastics and Composites, 27, 145-152.

[22]   Satapathy, A., Sutar, H., Mishra, S.C. and Sahoo, S.K. (2013) Characterization of Plasma Sprayed Pure Red Mud Coatings: An Analysis. American Chemical Science Journal, 3, 151-163.

[23]   Sutar, H., Roy, D., Mishra, S.C., Chakraverty, A.P. and Maharana, H.S. (2014) Friction and Wear Behaviour of Plasma Sprayed Fly Ash Added Red Mud Coatings. Physical Science International Journal, 5, 61-73.

[24]   Sutar, H., Roy, D. and Mishra, S.C. (2015) Effect of Fly Ash and Carbon Reinforcement on Dry Sliding Wear Behaviour of Red Mud. Indian Journal of Materials Science, 2015, Article ID: 296324.

[25]   Sutar, H., Mishra, S.C., Sahoo, S.K., Maharana, H.S. and Chakraverty, A.P. (2014) Tribological Aspects of Thermally Sprayed Red Mud-Fly Ash and Red Mud-Al Coatings on Mild Steel. American Chemical Science Journal, 4, 1014-1031.

[26]   Sutar, H., Mishra, S.C., Sahoo, S.K., Satapathy, A. and Kumar, V. (2012) Morphology and Solid Particle Erosion Wear Behavior of Red Mud Composite Coatings. Natural Science, 4, 832-838.

[27]   More, S.R., Bhatt, D.V. and Menghani, J.V. (2017) Study of the Parametric Performance of Solid Particle Erosion Wear under the Slurry Pot Test Rig. Tribology in Industry, 39, 471-481.

[28]   Sutar, H., Roy, D., Mishra, S.C. and Murmu, R. (2016) Sliding Wear Performance Evaluation of Red Mud (RM), RM + Fly Ash (FA) and RM + FA + Al Coatings on Mild Steel. Materials Sciences and Applications, 7, 171-179.

[29]   Sutar, H., Roy, D., Mishra, S.C., Patra, S. and Murmu, R. (2018) Thermal and Dry Sliding Wear Behavior of Plasma Sprayed Red Mud-Fly Ash Coatings on Mild Steel. Tribology in Industry, 40, 117-128.

[30]   Sudheer, M., Ravikantha, P., Raju, K. and Thirumaleshwara, B. (2012) Optimization of Dry Sliding Wear Performance of Ceramic Whisker Filled Epoxy Composites Using Taguchi Approach. Advances in Tribology, 2012, Article ID: 431903.