Back
 AJPS  Vol.10 No.12 , December 2019
Variation in 5-Enolpyruvylshikimate-3-Phosphate Synthase (EPSPS) Coding Sequences and Glyphosate Response among Cyperus rotundus L. Populations
Abstract: The gene sequence encoding 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), the enzymatic target site of the herbicide glyphosate, was determined for several purple nutsedge (Cyperus rotundus L.) accessions from geographically distant locations and these were aligned to generate a consensus sequence. The EPSPS sequences each had single nucleotide polymorphisms (SNPs) only a few of which were predicted to cause an amino acid change in the EPSP synthase. None had the proline to serine substitution or other substitutions responsible for glyphosate resistance reported in other species. A dendrogram generated from the cluster analysis of the EPSPS gene sequences indicated similarities between accessions from Tanzania, Indonesia, California-2, Greece, Brazil, Argentina and Iran much like cluster analysis previously reported based on RAPD scores and morphological traits possibly indicating a common genetic background or origin. Considering the differences in EPSPS sequences, the response of these purple nutsedge accessions to 0.84 kg·ae·ha-1 of glyphosate was assessed to determine whether differential tolerance was present. At 7 days after the first application control ranged from 9% for the accession from Greece to 73% for the accession from Tanzania. Control of these accessions increased to 45% and 93% respectively by 14 days after the second application. The I50’s for glyphosate inhibition of growth for four accessions from geographically distant countries (Mississippi, Brazil, Indonesia and Tanzania) were 0.21, 0.10, 0.25 and 0.06 kg·ha-1, respectively, which represented a 4-fold difference. The difference in sensitivity to glyphosate may be a result of a non-target site mechanism such as differences in sequestration, translocation or cuticle thickness rather than alterations in EPSPS.
Cite this paper: Molin, W. and Bryson, C. (2019) Variation in 5-Enolpyruvylshikimate-3-Phosphate Synthase (EPSPS) Coding Sequences and Glyphosate Response among Cyperus rotundus L. Populations. American Journal of Plant Sciences, 10, 2366-2381. doi: 10.4236/ajps.2019.1012164.
References

[1]   Holm, L.G., Plucknett, D.L., Pancho, J.V. and Herberger, J.P. (1977) The World’s Worst Weeds: Distribution, and Biology. University Press of Hawaii, Honolulu.

[2]   Holm, L., Pancho, J.V., Herberger, J.P. and Plucknett, D.L. (1979) A Geographical Atlas of World Weeds. John Wiley and Sons, New York.

[3]   Bendixen, L.E. and Nandihalli, U.B. (1987) Worldwide Distribution of Purple and Yellow Nutsedge (Cyperus rotundus and C. esculentus). Weed Technology 1, 61-65.
https://doi.org/10.1017/S0890037X00029158

[4]   Thullen, R.J. and Keeley, P.E. (1979) Seed Production and Germination in Cyperus esculentus and C. rotundus. Weed Science, 27, 502-505.
https://doi.org/10.1017/S0043174500044489

[5]   Horowitz, M. (1972) Growth, Tuber Formation and Spread of Cyperus rotundus L. from Single Tubers. Weed Research, 12, 348-363.
https://doi.org/10.1111/j.1365-3180.1972.tb01229.x

[6]   Okoli, C.A.N., Shilling, D.G., Smith, R.L. and Bewick, T.A. (1997) Genetic Diversity in Purple Nutsedge (Cyperus rotundus L.) and Yellow Nutsedge (Cyperus esculentus L.). Biological Control, 8, 111-118.
https://doi.org/10.1006/bcon.1996.0490

[7]   Pereira, W., Tessmann, D.J. and Charudattan, R. (2000) Analysis of Genetic Variation in Cyperus rotundus Accessions Using Molecular Markers. Third International Weed Science Conference, Foz do Iguassu, 47.

[8]   Neeser, C., Aguero, R. and Swanton, C.J. (1997) Survival and Dormancy of Purple Nutsedge (Cyperus rotundus) Tubers. Weed Science, 45, 784-790.
https://doi.org/10.1017/S0043174500088974

[9]   Komai, K., Tang, C.-S. and Nishimoto, R.K. (1991) Chemotypes of Cyperus rotundus in Pacific Rim and Basin: Distribution and Inhibitory Activities of Essential Oils. Journal of Chemical Ecology, 17, 1-8.
https://doi.org/10.1007/BF00994417

[10]   Molin, W.T., Kronfol, R.R., Ray, J.D., Scheffler, B.E. and Bryson, C.T. (2019) Genetic Diversity among Geographically Separated Cyperus rotundus Accessions Based on RAPD Markers and Morphological Characteristics. American Journal of Plants Sciences, 10, 2034-2046.
https://doi.org/10.4236/ajps.2019.1011143

[11]   Arias, R.S., Molin, W.T., Ray, J.D., Peels, M.D. and Scheffler, B.E. (2011) Isolation and Characterization of the First Microsatellite Markers for Cyperus rotundus. Weed Research, 51, 451-460.
https://doi.org/10.1111/j.1365-3180.2011.00861.x

[12]   Kükenthal, G. (1935-1936) Cyperaceae-Scirpoideae-Cypereae. In: Engler, A., Ed., Das Pflanzenreich 4(20) [Heft 101], Engelmann, Berlin, 1-671.

[13]   Wills, G.D. (1998) Comparison of Purple Nutsedge (Cyperus rotundus) from around the World. Weed Technology, 12, 491-503.
https://doi.org/10.1017/S0890037X00044201

[14]   Schippers, P., Ter Borg, S. and Bos, J.J. (1995) A Revision of the Infraspecific Taxonomy of Cyperus esculentus (Yellow Nutsedge) with an Experimentally Evaluated Character Set. Systematic Botany, 20, 461-481.
https://doi.org/10.2307/2419804

[15]   Wang, C.-Y. (2002) Effects of Glyphosate on Tuber Sprouting and Growth of Purple Nutsedge (Cyperus rotundus). Weed Technology, 16, 477-481.
https://doi.org/10.1614/0890-037X(2002)016[0477:EOGOTS]2.0.CO;2

[16]   Webster, T.M., Grey, T.L., Davis, J.W. and Culpepper, A.S. (2008) Glyphosate Hinders Purple Nutsedge (Cyperus rotundus) and Yellow Nutsedge (Cyperus esculentus) Tuber Production. Weed Science, 56, 735-742.
https://doi.org/10.1614/WS-07-188.1

[17]   Bryson, C.T., Reddy, K.N. and Molin, W.T. (2003) Purple Nutsedge (Cyperus rotundus) Population Dynamics in Narrow Row Transgenic Cotton (Gossypium hirsutum) and Soybean (Glycine max) Rotation. Weed Technology, 17, 805-810.
https://doi.org/10.1614/WT02-177

[18]   Nei, M. (1987) Molecular Evolutionary Genetics. Columbia University Press, New York.
https://doi.org/10.7312/nei-92038

[19]   Baerson, S.R., Rodriguez, D.J., Tran, M., Feng, Y., Biest, N.A. and Dill, G.M. (2002) Glyphosate-Resistant Goosegrass. Identification of a Mutation in the Target Enzyme 5-Enolpyruvylshikimate-3-phosphate Synthase. Plant Physiology, 129, 1265-1275.
https://doi.org/10.1104/pp.001560

[20]   Tropicos (2019) Tropicos.org. Missouri Botanical Garden, Saint Louis.
http://www.tropicos.org/Name/22200058

[21]   SERNEC Data Portal. http://sernecportal.org/portal/index.php

[22]   Paterson, A.H., Brubaker, C.L. and Wendel, J.F. (1993) A Rapid Method for Extraction of Cotton Genomic DNA Suitable for RFLP or PCR Analysis. Plant Molecular Biology Reports, 11, 122-127.
https://doi.org/10.1007/BF02670470

[23]   Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1.76-1.78.

[24]   Drummond, A.J., Ashton, B., Buxton, S., Cheung, M., Cooper, A., Duran, C., et al. (2011) Geneious, v5.4. http://www.geneious.com

[25]   (2012) Data Analysis for This Paper Was Generated Using SAS Software. SAS Institute Inc., SAS Campus Drive, Cary.

[26]   García, M.J., Palma-Bautista, C., Rojano-Delgado, A.M., Bracamonte, E., Portugal, J., Alcántara-de la Cruz, R. and De Prado, R. (2019) The Triple Amino Acid Substitution TAP-IVS in the EPSPS Gene Confers High Glyphosate Resistance to the Superweed Amaranthus hybridus. International Journal of Molecular Science, 20, 2396.
https://doi.org/10.3390/ijms20102396

[27]   Eschenburg, S., Healy, M., Priestman, M., Lushington, G. and Schonbrunn, E. (2002) How the Mutation glycine96 to Alanine Confers Glyphosate Insensitivity to 5-Enolpyruvyl Shikimate-3-Phosphate Synthase from Escherichia coli. Planta, 216, 129-135.
https://doi.org/10.1007/s00425-002-0908-0

 
 
Top