Back
 JFRM  Vol.8 No.4 , December 2019
Adaptive Financial Fraud Detection in Imbalanced Data with Time-Varying Poisson Processes
Abstract: This paper discusses financial fraud detection in imbalanced dataset using homogeneous and non-homogeneous Poisson processes. The probability of predicting fraud on the financial transaction is derived. Applying our methodology to financial datasets with different fraud profiles shows a better predicting power than a baseline approach, especially in the case of higher imbalanced data.
Cite this paper: Houssou, R. , Bovay, J. and Robert, S. (2019) Adaptive Financial Fraud Detection in Imbalanced Data with Time-Varying Poisson Processes. Journal of Financial Risk Management, 8, 286-304. doi: 10.4236/jfrm.2019.84020.
References

[1]   Artzner, P., & Delbaen, F. (1995). Default Risk Insurance and Incomplete Markets. Mathematical Finance, 5, 187-195.
https://doi.org/10.1111/j.1467-9965.1995.tb00064.x

[2]   Basawa, I. V., & Rao, B. L. (1980). Statistical Inference for Stochastic Processes. New York: Academic Press.
https://doi.org/10.1016/B978-0-12-080250-0.50017-8

[3]   Brown, M. (1972). Statistical Analysis of Non-Homogeneous Poisson Process. In Stochastic Point Processes: Statistical Analysis, Theory and Applications (pp. 67-89). New York: Wiley.

[4]   Cox, D. R., & Lewis, P. A. (1966). Statistical Analysis of Series of Events. London: Methuen.
https://doi.org/10.1007/978-94-011-7801-3

[5]   Drazek, L. C. (2013). Intensity Estimation for Poisson Processes. Master Thesis, Leeds: The University of Leeds.

[6]   Duffie, D., & Singleton, K. (1999). Modelling Term Structures of Defaultable Bonds. Review of Financial Studies, 12, 687-720.
https://doi.org/10.1093/rfs/12.4.687

[7]   Dyzma, M. (2018). Fraud Detection with Machine Learning: How Banks and Financial Institutions Leverage AI.
https://www.netguru.com/blog/fraud-detection-with-machine-learning-how-banks-and-financial-institutions-leverage-ai

[8]   Elrahman, S. M. A., & Abraham, A. (2013). A Review of Class Imbalance Problem. Journal of Networking and Innovative Computing, 1, 332-340.

[9]   Fleming, T. R., & Harrington, D. P. (2005). Counting Processes and Survival Analysis. Hoboken, NJ: John Wiley and Sons.
https://doi.org/10.1002/9781118150672

[10]   Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., & Herrera, F. (2012). A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 42, 463-484.
https://doi.org/10.1109/TSMCC.2011.2161285

[11]   He, H., & Garcia, E. A. (2009). Learning from Imbalanced Data. IEEE Transactions on Knowledge and Data Engineering, 21, 1263-1284.
https://doi.org/10.1109/TKDE.2008.239

[12]   Inoue, A., Jin, L., & Rossi, B. (2017). Rolling Window Selection for Out-of-Sample Forecasting with Time-Varying Parameters. Journal of Economoetrics, 196, 55-67.
https://doi.org/10.1016/j.jeconom.2016.03.006

[13]   Jarrow, R., & Turnbull, S. (1995). Pricing Derivatives on Financial Securities Subject to Credit Risk. Journal of Finance, 50, 53-86.
https://doi.org/10.1111/j.1540-6261.1995.tb05167.x

[14]   Kingman, J. F. C. (1993). Poisson Process. Oxford: Oxford University Press.

[15]   Krawczyk, B. (2016). Learning from Imbalanced Data: Open Challenges and Future Directions. Progress in Artificial Intelligence, 5, 221-232.

[16]   Massey, W. A., Parker, G. A., & Whitt, W. (1996). Estimating the Parameters of a Nonhomogeneous Poisson Process with Linear Rate. Telecommunication Systems, 5, 361-388.
https://doi.org/10.1007/BF02112523

[17]   Reiss, R.-D. (1993). A Course on Point Processes. Springer Series in Statistics, Berlin: Springer.
https://doi.org/10.1007/978-1-4613-9308-5

[18]   Ross, S. M. (1996). Stochastic Processes. Hoboken, NJ: Wiley.

[19]   Ross, S. M. (2010). Introduction to Probability Models (10th ed.). Boston, MA: Academic Press.
https://doi.org/10.1016/B978-0-12-375686-2.00007-8

 
 
Top