MSA  Vol.10 No.12 , December 2019
Effect of Sand Partial Substitution for Glass Powder on the Behaviour of Sand-Cement Mortar
Abstract: Partial substitution of aggregates for pieces of glass in concrete contributes to reducing the use this resource and preserving the environment for future generations. However, concretes or mortars mixed with crushed glass can deteriorate within a few years, because of the alkali-silica reaction related to the size of glass pieces. Some investigations were carried out in order to find out how to bring down this phenomenon. Different percentages of glass powder were mixed with mortar made from sand, cement and crushed glass pieces of which diameter is between 1 and 5 mm. Products obtained were submitted to flexural testing, compressive strength testing and resistance to acid attack and Scanning Electron microscopy (SEM) observations were made after a period running from 28 to 180 days of drying. The results show an increase in the mechanical properties of products with glass powder and an improvement in the durability of mortar in acidic environment. Such improvements are related to the enhanced adhesion created between crushed glass pieces and cementitious matrix containing glass powder as a result of pozzolanic reaction.
Cite this paper: Djomo, S. , Kouakou, C. , Kouadio, K. , Boffoue, M. and Emeruwa, E. (2019) Effect of Sand Partial Substitution for Glass Powder on the Behaviour of Sand-Cement Mortar. Materials Sciences and Applications, 10, 756-767. doi: 10.4236/msa.2019.1012055.

[1]   Rashed, A.M. (2014) Recycled Waste Glass as Fine Aggregate Replacement in Cementitious Materials Based on Portland Cement. Construction and Building Materials, 72, 340-357.

[2]   Lemontri 2019 le recyclage du verre.

[3]   Verre avenir (2019) Le recyclage du verre.

[4]   Le journal de Québèc (2019) Une solution trouvée pour recycler toutes les bouteilles en verre.

[5]   OMS (2018) Paludisme. Le rapport de cette année en un clin d’æil.

[6]   Djomo, S.A., Kouakou, C.H., Kouadio, K.C., Boffoué, M.O. and Emeruwa, E. (2016) Détermination d’une formulation de carreaux monocouche avec une incorporation de tessons de bouteille de verre. International Journal of Innovation and Applied Studies, 17, 269-274.

[7]   Larive, C. (1998) Combined Contribution of Experimentation and Modeling to the Understanding of the Alkali Reaction and Its Mechanical Effects. OA 28, Central Laboratory Presses of Roads and Bridges, 278 p.

[8]   Dehaudt, S. (2002) Study of the Degradation of Concrete Subjected to Alkali-Silica Reaction. Ph.D. of the University of Lille, Lille, 215 p.

[9]   Marzouk, H. and Langdon, S. (2003) The Effect of Alkali-Aggregate Reactivity on the Mechanical Properties of High and Normal Strength Concrete. Cement and Concrete Composites, 25, 549-556.

[10]   Constantiner, D. and Diamond, S. (2003) Alkali Release from Feldsars into Pore Solution. Cement and Concrete Research, 33, 549-554.

[11]   Gillott, J.E. and Rogers, C.A. (2003) The Behaviour of Silico Car Bonite Aggregats from the Montreal Area. Cement and Concrete Research, 33, 471-480.

[12]   Longuet, P., Burglen, L. and Zelwer, A. (1974) The Liquid Phase of the Hydrated Cement. Building Materials and Public Works Review, 676, 35-41.

[13]   Byars, E.A., Zhu, H. and Morales, B. (2004) Conglasscrete I, Final Report to the Waste and Resources Actions Programme. University of Sheffield, Sheffield.

[14]   Pereira de Oliveira, L.A., Castro Gomes, G.J.P. and Santos, P. (2008) Optimization of Pozzolanic Reaction of Ground Waste Glass Incorporated in Cement Mortars. University of Beira Interior, Covilha.

[15]   Idir, R., Cyr, M. and Tagnithamou, A. (2010) Peuton valoriser massivement le verre dans les bétons? Etude des propriétés des bétons de verre. Technologie Valorisation, 16, 70-77.

[16]   Locher, F.W., Richartz, W. and Sprung, S. (1976) Erstarren von Zement 1, Reaktion und Gefùgeentwicklung. Ze-ment-Kalk-Gips, 29, 442.

[17]   URDA-NRC (2002) Field Book for Describing and Sampling Soils, Version 2 Comparaison d’échelle et classifications granulo-métriques. 2.

[18]   ASTM C150 (2004) Standard Specification for Heat-Treated Flat Glass—Kind HS, Kind FT Coated and Uncoated Glass.

[19]   ASTM C618 (2015) Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International, West Conshohocken.

[20]   Islam Sadiqul, G.M., Rahman, M.H. and Kazi, N. (2017) Waste Glass Powder as Partial Replacement of Cement for Sustainable Concrete Practice. Internationnal Journal of Sustainble Built Environment, 6, 37-44.

[21]   NF P 15-403 (1996) Sable normal et mortier normal. AFNOR, Paris.

[22]   NF EN 196-1 (2005) Methods of Testing Cement. Determination of Strength. European Committee for Standardization, Brussels.

[23]   NF EN 1015-11 (2000) Méthode d’essai des mortiers pour maconnerie Partie 11: Détermination de la résistance en compression du mortier durci. AFNORM, Paris.

[24]   Benkaddour, B., Fatiha, K. and Abdelaziz, S. (2009) Durability of Mortars Natural Pozzolan and Artificial Pozzolan. Nature and Technology, 1, 63-73.

[25]   Ghrici, M., Said-Mansour, M. and Kenai, S. (2005) Effet de la combinaison de la pouzzolane et du calcaire sur les propriétés des mortiers et des bétons. CIRCDD, Alger 3-4.

[26]   Moisson (2005) Contribution à la maitrise de la réaction Alcali-Silice par ajout de fines de granulats réactifs dans le béton. Thèse de l’Institut National des sciences appliquées de Toulouse, 203 p.