[1] Albright, R., Caldeira, L., Hosfelt, J., Kwiatkowski, L., Maclaren, J. K., Caldeira, K. et al. (2016). Reversal of Ocean Acidification Enhances Net Coral Reef Calcification. Nature, 531, 362-365.
https://doi.org/10.1038/nature17155
[2] Barker, S., & Ridgwell, A. (2012). Ocean Acidification. Nature Education Knowledge, 3, 21. https://www.nature.com/scitable/knowledge/library/ocean-acidification-25822734
[3] Battle, M., Bender, M. L., Tans, P. P., White, J. W., Ellis, J. T., Conway, T., & Francey, R. J. (2000). Global Carbon Sinks and Their Variability Inferred from Atmospheric O2 and δ13C. Science, 287, 2467-2470.
https://doi.org/10.1126/science.287.5462.2467
[4] Bishop, J., & Hill, Ch. (2014). Global Biodiversity Finance; the Case for International Payments for Ecosystem Services; in Association with IUCN and UNEP, IUCN 2014.
[5] Britton, D., Cornwall, C. E., Revill, A. T., Hurd, C. L., & Johnson, C. R. (2016). Ocean Acidification Reverses the Positive Effects of Seawater pH Fluctuations on Growth and Photosynthesis of the Habitat-Forming Kelp, Ecklonia radiata. Scientific Reports, 6, Article No. 26036.
https://doi.org/10.1038/srep26036
[6] Bruhn, A., Dahl, J., Nielsen, H. B., Nikolaisen, L., Rasmussen, M. B., Markager, S., Olesen, B., Arias, C., & Jensen, P. D. (2011). Bioenergy Potential of Ulva lactuca: Biomass Yield, Methane Production and Combustion. Bioresource Technology, 102, 2595-2604.
https://doi.org/10.1016/j.biortech.2010.10.010
[7] Buschmann, A. H., Camus, C., Infante, J., Neori, A., Israel, á., Hernández-González, M. C., Pereda, S. V., Gomez-Pinchetti, J. L., Golberg, A., Tadmor-Shalev, N., & Critchley, A. T. (2017). Seaweed Production: Overview of the Global State of Exploitation, Farming and Emerging Research Activity. European Journal of Phycology, 52, 391-406.
https://doi.org/10.1080/09670262.2017.1365175
[8] Caldeira, K., & Wickett, M. E. (2003). Anthropogenic Carbon and Ocean pH. Nature, 425, 365-365.
https://doi.org/10.1038/425365a
[9] Christiansen, R. C. (2008). British Report: Use Kelp to Produce Energy.
http://www.biomassmagazine.com/articles/2166/British-report-use-kelp-to-produce-energy
[10] D’Angelo, C., & Wiedenmann, J. (2014). Impact of Nutrient Enrichment on Coral Reef: A New Perspectives and Implications for Coastal Management and Reef Survival. Current Opinion in Environmental Sustainability, 7, 82-93.
https://doi.org/10.1016/j.cosust.2013.11.029
[11] De’ath, G., Lough, J. M., & Fabricius, K. E. (2009). Declining Coral Calcification on the Great Barrier Reef. Science, 323, 116-119.
https://doi.org/10.1126/science.1165283
[12] Doney, S. C., Fabry, V. J., Feely, R. A., & Kleypas, J. A. (2009). Ocean Acidification: The Other CO2 Problem. Annual Review of Marine Science, 1, 169-192.
https://doi.org/10.1146/annurev.marine.010908.163834
[13] Duggins, D. O., Simenstad, C. A., & Estes, J. A. (1989). Magnification of Secondary Production by Kelp Detritus in Coastal Marine Ecosystems. Science, 245, 170-173.
https://doi.org/10.1126/science.245.4914.170
[14] Enochs, I. C., Manzello, D. P., Doham, E. M., Kolodziej, G., Okano, R., Johnston, L., Price, N. N. et al. (2015). Shift from Coral to Macroalgae Dominance on a Volcanically Acidified Reef. Nature Climate Change, 5, 1083-1088.
https://doi.org/10.1038/nclimate2758
[15] Feeley, R. A., Doney, F. S., & Cooley, S. R. (2009). Ocean Acidification: Present Conditions and Future Changes in a High-CO2 World. Oceanography, 22, 36-47.
https://doi.org/10.5670/oceanog.2009.95
[16] Hall-Spencer, J. M., Rodolfo-Metalpa, R., Martin, S., Ransome, E., Fine, M., Turner, S. M., Rowley, S. J., Tedesco, D., & Buia, M. C. (2008). Volcanic Carbon Dioxide Vents Show Ecosystem Effects of Ocean Acidification. Nature, 454, 96-99.
https://doi.org/10.1038/nature07051
[17] Hurd, C. L., Harrison, P. J., Bischof, K., & Lobban, C. S. (2014). Seaweed Ecology and Physiology (2nd ed., 551 p.). Cambridge: Cambridge University Press.
https://doi.org/10.1017/CBO9781139192637
[18] Laffoley, D. A., & Grimsditch, G. (2009). The Management of Natural Coastal Carbon Sinks (53 p.). Gland: IUCN.
[19] Milledge, J. J., Smith, B., Dyer, P. W., & Harvey, P. (2014). Macroalgae-Derived Biofuel: A Review of Methods of Energy Extraction from Seaweed Biomass. Energies, 7, 7194-7222.
https://doi.org/10.3390/en7117194
[20] Mora, C., Wei, C. L., Rollo, A., Amaro, T., Baco, A. R. et al. (2013). Biotic and Human Vulnerability to Projected Changes in Ocean Biogeochemistry over the 21st Centu-ry. PLoS Biology, 11, e1001682.
https://doi.org/10.1371/journal.pbio.1001682
[21] Normille, D. (2010). Hard Summer for Corals Kindles Fears for Survival of Reefs. Science, 329, 1001.
https://doi.org/10.1126/science.329.5995.1001
[22] Oreskens, N. (2004). The Scientific Consensus on Global Warming. Science, 306, 1686.
https://doi.org/10.1126/science.1103618
[23] Orr, J. C., Fabry, V. J., Amount, O., Yool, A. et al. (2005). Anthropogenic Ocean Acidification over the Twenty-First Century and Its Impact on Calcifying Organisms. Nature, 479, 681-686.
https://doi.org/10.1038/nature04095
[24] Pennisi, E. (2009). Coral Reefs. Calcification Rates Drops in Australian Reefs. Science, 323, 27.
https://doi.org/10.1126/science.323.5910.27
[25] Raven, J., Caldeira, K., Elderfield, H., Hoegh-Guldberg, O., Liss, P. S., Riebesell, U., Sheperd, J., Turley, C., & Watson, A. (2005). Ocean Acidification Due to Increasing Atmospheric Carbon Dioxide (57 p.). Royal Society Policy Document.
https://ueaeprints.uea.ac.uk/id/eprint/32712
[26] van Ginneken, V. (2017). The Photosynthetic System of the Seaweeds: The Seaweed Paradox. Asian Journal of Science and Technology, 8, 6567-6571.
[27] van Ginneken, V. (2018). Some Mechanisms Seaweeds Employ to Cope with Salinity Stress in the Harsh Euhaline Oceanic Environment. American Journal Plant Sciences, 9, 1191-1211.
https://doi.org/10.4236/ajps.2018.96089
[28] van Ginneken, V., & de Vries, E. (2015). Towards a Seaweed Based Economy. Journal of Fisheries Sciences, 9, 85-88.
[29] van Ginneken, V., & de Vries, E. (2016). Towards a Seaweed Based Economy: The Global Ten Billion People Issue at the Midst of the 21st Century. Journal of Fisheries Sciences, 10, 1-11.
[30] van Ginneken, V., & de Vries, E. (2018). Seaweeds as Biomonitoring System for Heavy Metal (HM) Accumulation and Contamination of Our Oceans. American Journal of Plant Sciences, 9, 1514-1530.
https://doi.org/10.4236/ajps.2018.97111
[31] van Ginneken, V., de Vries, E., & Wijgerde, T. (2016). A Suggested “Seaweed-Plantation Model” to Tackle the Looming Phosphorus Crises in the 21st Century at the Rhine/ North Sea System. Journal of Fisheries Sciences, 9, 105-114.