JAMP  Vol.7 No.12 , December 2019
Nanostructured Anti-Reflection Coatings for Enhancing Transmission of Light
Abstract: Nanostructured, sub-wavelength anti-reflection layers (NALs) have attracted much attention as a new generation of anti-reflection surfaces. Among different designs, sub-wavelength periodic nanostructures are capable of enhancing transmission of coherent light through an interface without inducing scattering. In this work, we have explored a new profile for periodic NALs capable of transmitting IR light with higher efficiency compared to NALs based on a parabolic profile. To achieve high transmission and low diffraction, the profile and pitch of the nanostructured NALs are calculated using a combination of a multi-layer modeling and Rigorous Coupled Wave (RCWA) analysis.
Cite this paper: Mousavi, B. , Mousavu, A. , Busani, T. , Zadeh, M. and Brueck, S. (2019) Nanostructured Anti-Reflection Coatings for Enhancing Transmission of Light. Journal of Applied Mathematics and Physics, 7, 3083-3100. doi: 10.4236/jamp.2019.712217.

[1]   Raut, H.K., Ganesh, V.A., Nair, A.S. and Ramakrishna, S. (2011) Anti-Reflective Coatings: A Critical, in-Depth Review. Energy & Environmental Science, 4, 3779-3804.

[2]   Bouhafs, D., Moussi, A., Chikouche, A. and Ruiz, J. (1998) Design and Simulation of Antireflection Coating Systems for Optoelectronic Devices: Application to Silicon Solar Cells. Solar Energy Materials and Solar Cells, 52, 79-93.

[3]   Hobbs, D.S. and MacLeod, B.D. (2005) High Laser Damage Threshold Surface Relief Micro-Structures for Antireflection Applications, In Laser-Induced Damage in Optical Materials: 2007, International Society for Optics and Photonics, Vol. 6720, p 67200L.

[4]   Xi, J.Q., Schubert, M.F., Kim, J.K., Schubert, E.F., Chen, M., Lin, S.Y., Liu, W. and Smart, J.A. (2007) Optical Thin-Film Materials with Low Refractive Index for Broadband Elimination of Fresnel Reflection. Nature Photonics, 1, 176-179.

[5]   Xu, X., Li, H., Zhuo, Y., Xiong, D. and Chen, M. (2019) Gradient Refractive Index Structure of Phosphor-in-Glass Coating for Packaging of White LEDs. Journal of the American Ceramic Society, 102, 1677-1685.

[6]   Yeo, N.E., Cho, W.K., Kim, D.I. and Jeong, M.Y. (2018) Enhanced Anti-Scratch Performance of Nanopatterned Anti-Reflective Polymer Films. Applied Surface Science, 458, 503-511.

[7]   Askar, K., Phillips, B.M., Fang, Y., Choi, B., Gozubenli, N., Jiang, P. and Jiang, B. (2013) Self-Assembled Selfcleaning Broadband Anti-Reflection Coatings. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 439, 84-100.

[8]   Xu, Y., Zhang, B., Fan, W.H., Wu, D. and Sun, Y.H. (2003) Sol-Gel Broadband Anti-Reflective Single-Layer Silica Films with High Laser Damage Threshold. Thin Solid Films, 440, 180-183.

[9]   Mousavi, B.K. (2018) Selected Applications of Silicon Nanopillar Arrays. Ph.D. Thesis, the University of New Mexico, Albuquerque, NM.

[10]   Zhou, Y.P., He, Y.L., Tong, Z.X. and Liu, Z.B. (2019) Multi-Physics Coupling Effects of Nanostructure Characteristics on the All-Back-Contact Silicon Solar Cell Performances. Applied Energy, 236, 127-136.

[11]   Choi, H.J., Huh, D., Jun, J. and Lee, H. (2019) A Review on the Fabrication and Applications of Sub-Wavelength Anti-Reflective Surfaces Based on Biomimetics. Applied Spectroscopy Reviews, 54, 719-735.

[12]   Papet, P., Nichiporuk, O., Kaminski, A., Rozier, Y., Kraiem, J., Lelievre, J.F., Chaumartin, A., Fave, A. and Lemiti, M. (2006) Pyramidal Texturing of Silicon Solar Cell with TMAH Chemical Anisotropic Etching. Solar Energy Materials and Solar Cells, 90, 2319-2328.

[13]   Kheyraddini Mousavi, B., Behzadirad, M., Silani, Y., Karbasian, F., Kheyraddini Mousavi, A. and Mohajerzadeh, S. (2019) Metal-Assisted Chemical Etching of Silicon and Achieving Pore Sizes as Small as 30 nm by Altering Gold Thickness. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 37, 061402.

[14]   Chen, H., Chuang, S., Lin, C. and Lin, Y. (2007) Using Colloidal Lithography to Fabricate and Optimize Subwavelength Pyramidal and Honeycomb Structures in Solar Cells. Optics Express, 15, 14793-14803.

[15]   Kumar, A., Chaliyawala, H., Siddhanta, S. and Barshilia, H.C. (2016) Broadband Quasi-Omnidirectional Subwavelength Nanoporous Antireflecting Surfaces on Glass Substrate for Solar Energy Harvesting Applications. Solar Energy Materials and Solar Cells, 145, 432-439.

[16]   Bett, A., Eisenlohr, J., Höhn, O., Bläsi, B., Benick, J., Repo, P., Savin, H., Goldschmidt, J. and Hermle, M. (2014) Front Side Antireflection Concepts for Silicon Solar Cells with Diffractive Rear Side Structures. In: 29th European Photovoltaic Solar Energy Conference and Exhibition, Brussels, Belgium, 987-991.

[17]   Tavakoli, M.M., Tsui, K.H., Zhang, Q., He, J., Yao, Y., Li, D. and Fan, Z. (2015) Highly Efficient Flexible Perovskite Solar Cells with Antireflection and Self-Cleaning Nanostructures. ACS Nano, 9, 10287-10295.

[18]   MacLeod, B.D. and Hobbs, D.S. (2004) Low-Cost Anti-Reflection Technology for Automobile Displays. Journal of the Society for Information Display, Automotive Display Conference, 1-6.

[19]   Karbassian, F., Mousavi, B.K., Rajabali, S., Talei, R., Mohajerzadeh, S. and Asl-Soleimani, E. (2014) Formation of Luminescent Silicon Nanowires and Porous Silicon by Metal-Assisted Electroless Etching. Journal of Electronic Materials, 43, 1271-1279.

[20]   Stevens, L., Tucher, N., Höhn, O., Hauser, H., Müller, C. and Bläsi, B. (2019) Broadband Antireflection Mie Scatterers Revisited—A Solar Cell and Module Analysis. Optics Express, 27, A524-A535.

[21]   Jang, H.J., Kim, Y.J., Yoo, Y.J., Lee, G.J., Kim, M.S., Chang, K.S. and Song, Y.M. (2019) Double-Sided Anti-Reflection Nanostructures on Optical Convex Lenses for Imaging Applications. Coatings, 9, 404.

[22]   Kassis, E., Riech, G., Joseph, S., Yadlovker, D. and Shinman, A. (2019) Anti-Reflective Nanostructures and Coatings on Sapphire Substrates for Extreme Temperature Applications. Optical Interference Coatings, Optical Society of America, TB-7.

[23]   Mishra, A., Bhatt, N. and Bajpai, A. (2019) Nanostructured Superhydrophobic Coatings for Solar Panel Applications. In: Nanomaterials-Based Coatings, Elsevier, Amsterdam, 397-424.

[24]   Luo, X., Lu, L., Yin, M., Fang, X., Chen, X., Li, D., Yang, L., Li, G. and Ma, J. (2019) Antireflective and Self-Cleaning Glass with Robust Moth-Eye Surface Nanostructures for Photovoltaic Utilization. Materials Research Bulletin, 109, 183-189.

[25]   Wang, Y., Ye, X., Li, B., He, J. and Zheng, W. (2019) Straightforward Approach to Antifogging, Antireflective, Dual-Function, Nanostructured Coatings. Langmuir, 35, 11351-11357.

[26]   Kang, G., Yoo, J., Ahn, J. and Kim, K. (2015) Transparent Dielectric Nanostructures for Efficient Light Management in Optoelectronic Applications. Nano Today, 10, 22-47.

[27]   Kim, J.J., Lee, Y., Kim, H.G., Choi, K.J., Kweon, H.S., Park, S. and Jeong, K.H. (2012) Biologically Inspired LED Lens from Cuticular Nanostructures of Firefly Lantern. Proceedings of the National Academy of Sciences of the United States of America, 109, 18674-18678.

[28]   Lee, H.K., Kim, M.S. and Yu, J.S. (2011) Light-Extraction Enhancement of Large-Area GaN-Based LEDs with Electrochemically Grown ZnO Nanorod Arrays. IEEE Photonics Technology Letters, 23, 1204-1206.

[29]   Kim, H., Cho, J., Lee, J.W., Yoon, S., Kim, H., Sone, C., Park, Y. and Seong, T.Y. (2007) Enhanced Light Extraction of GaN-Based Light-Emitting Diodes by Using Textured n-Type GaN Layers. Applied Physics Letters, 90, Article ID: 161110.

[30]   Ducros, C., Brodu, A., Lorin, G., Emieux, F. and Pereira, A. (2019) Optical Performances of Antireflective Motheye Structures. Comparison with Standard Vacuum Antireflection Coatings for Application to Outdoor Lighting LEDs. Surface and Coatings Technology, 379, 125044.

[31]   Schulze, M., Damm, M., Helgert, M., Kley, E.B., Nolte, S. and Tünnermann, A. (2012) Durability of Stochastic Antireflective Structures-Analyses on Damage Thresholds and Adsorbate Elimination. Optics Express, 20, 18348-18355.

[32]   Wilson, C.R., Hutchens, T.C., Frantz, J.A., Busse, L.E., Shaw, L.B., Sanghera, J.S., Aggarwal, I.D. (2019) Laser Damage Testing of Windows with Anti-Reflection Structured Surfaces for High Power Continuous-Wave Near-Infrared Laser Applications. Proceedings of Window and Dome Technologies and Materials XVI, International Society for Optics and Photonics, 10985, 109850D.

[33]   Sood, A.K., Pethuraja, G., Sood, A.W., Welser, R.E., Puri, Y.R., Cho, J., Schubert, E.F., Dhar, N.K., Wijewarnasuriya, P. and Soprano, M.B. (2012) Development of Large Area Nanostructure Antireflection Coatings for EO/IR Sensor Applications. In Proc SPIE, Vol. 8512, pp. 85120R-85121R.

[34]   Huang, Y.F., Chattopadhyay, S., Jen, Y.J., Peng, C.Y., Liu, T.A., Hsu, Y.K., Pan, C.L., Lo, H.C., Hsu, C.H., Chang, Y.H., et al. (2007) Improved Broadband and Quasi-Omnidirectional Anti-Reflection Properties with Biomimetic Silicon Nanostructures. Nature Nanotechnology, 2, 770-774.

[35]   Sulzbach, F.C. (1996) Durable Wideband Anti-Reflection Coating for Infrared Windows. U.S. Patent 5510186.

[36]   Mousavi, A., Atwater, M., Mousavi, B., Jalalpour, M., Taha, M. and Leseman, Z. (2014) Mechanical and Electrical Characterization of Entangled Networks of Carbon Nanofibers. Materials, 7, 4845-4853.

[37]   Rabiee Golgir, H., Ghandiparsi, S., Devine, E.P., Mayet, A.S., Bartolo-Perez, C., Wijewarnasuriya, P.S., Dhar, N.K. and Islam, M.S. (2019) Ultra-Thin Super Absorbing Photon Trapping Materials for High-Performance Infrared Detection. Proceedings of Infrared Technology and Applications XLV, International Society for Optics and Photonics, 11002, 110020T.

[38]   Li, Y., Park, S., Fullager, D.B., Childers, D., Poutous, M.K., Aggarwal, I.D., Boreman, G. and Hofmann, T. (2019) Near-Infrared Transmittance Enhancement Using Fully Conformal Antireflective Structured Surfaces on Microlenses Fabricated by Direct Laser Writing. Optical Engineering, 58, Article ID: 010501.

[39]   Mousavi, B.K., Mousavi, A.K., Hieber, T.J., Chen, J. and Leseman, Z.C. (2019) Mode II Adhesion Energy Analysis of Stiction-Failed Poly-Si Cantilevers Using a MEMS Load Cell. Journal of Micromechanics and Microengineering, 29, Article ID: 075013.

[40]   Saini, D. and Mehl, R. (2018) Damage Threshold Studies on Optical Fibers and End-Capped Fibers with Random Antireflection (RAR) Nanostructures. Proceedings of Micro-Structured and Specialty Optical Fibres V, International Society for Optics and Photonics, 10681, 106810C.

[41]   Hobbs, D.S., MacLeod, B.D. and Sabatino, E. (2012) Continued Advancement of Laser Damage Resistant Optically Functional Microstructures. Proceedings of Laser-Induced Damage in Optical Materials, International Society for Optics and Photonics, 8530, 85300O.

[42]   Kraus, M., Diao, Z., Weishaupt, K., Spatz, J.P., Täschner, K., Bartzsch, H., Schmittgens, R. and Brunner, R. (2019) Combined “Moth-Eye” Structured and Graded Index-Layer Anti-Reflecting Coating for High Index Glasses. Optics Express, 27, 34655-34664.

[43]   Yoo, Y.J., Kim, Y.J., Kim, S.Y., Lee, J.H., Kim, K., Ko, J.H., Lee, J.W., Lee, B.H. and Song, Y.M. (2019) Mechanically Robust Antireflective Moth-Eye Structures with a Tailored Coating of Dielectric Materials. Optical Materials Express, 9, 4178-4186.

[44]   Behera, S. and Kim, K. (2019) Design and Studies on Gradient Index Metasurfaces for Broadband Polarization Independent, Subwave Length, and Dichroic Focusing. Applied Optics, 58, 5128-5135.

[45]   Al-Fandi, M., Makableh, Y.F., Khasawneh, M. and Rabady, R. (2018) Near Zero Reflection by Nanostructured Anti-Reflection Coating Design for Si Substrates. Superlattices and Microstructures, 117, 115-120.

[46]   Hobbs, D.S. and MacLeod, B.D. (2007) Design, Fabrication, and Measured Performance of Anti-Reflecting Surface Textures in Infrared Transmitting Materials. Laser-Induced Damage in Optical Materials, International Society for Optics and Photonics, 6720, 67200L.

[47]   Kheyraddini Mousavi, A., Leseman, Z. and Kheyraddini Mousavi, B. (2019) High Speed Michelson Interferometer Microscope. U.S. Patent 10436570.

[48]   Kothary, P., Phillips, B.M., Leo, S.Y. and Jiang, P. (2016) Bioinspired Broadband Midwavelength Infrared Antireflection Coatings on Silicon. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 34, Article ID: 041807.

[49]   Kang, Y.H., Oh, S.S., Kim, Y.S. and Choi, C.G. (2010) Fabrication of Antireflection Nanostructures by Hybrid Nano-Patterning Lithography. Microelectronic Engineering, 87, 125-128.

[50]   Leem, J.W., Song, Y.M. and Yu, J.S. (2011) Broadband Wide-Angle Antireflection Enhancement in AZO/Si Shell/Core Sub-Wavelength Grating Structures with Hydrophobic Surface for Si-Based Solar Cells. Optics Express, 19, A1155-A1164.

[51]   Yamada, I., Kintaka, K., Nishii, J., Akioka, S., Yamagishi, Y. and Saito, M. (2008) Mid-Infrared Wire-Grid Polarizer with Silicides. Optics Letters, 33, 258-260.

[52]   Mousavi, A.K., Abbas, K., Elahi, M.M.M., Lima, E., Moya, S., Butner, J.D., Pinon, D., Benga, A., Mousavi, B.K. and Leseman, Z.C. (2014) Pulsed Vacuum and Etching Systems: Theoretical Design Considerations for a Pulsed Vacuum System and Its Application to XeF2 Etching of Si. Vacuum, 109, 216-222.

[53]   Liu, W., Hu, H., Liu, F. and Zhao, H. (2019) Manipulating Light Trace in a Gradient-Refractive-Index Medium: A Lagrangian Optics Method. Optics Express, 27, 4714-4726.

[54]   Kaddouri, A., Kouzou, A., Hafaifa, A. and Khadir, A. (2019) Optimization of Anti-Reflective Coatings Using a Graded Index Based on Silicon Oxynitride. Journal of Computational Electronics, 18, 971-981.

[55]   Skryabin, I., Radchik, A., Moses, P. and Smith, G. (1997) The Consistent Application of Maxwell-Garnett Effective Medium Theory to Anisotropic Composites. Applied Physics Letters, 70, 2221-2223.

[56]   Schubert, M.F., Mont, F.W., Chhajed, S., Poxson, D.J., Kim, J.K. and Schubert, E.F. (2008) Design of Multilayer Antireflection Coatings Made from Co-Sputtered and Low-Refractive-Index Materials by Genetic Algorithm. Optics Express, 16, 5290-5298.

[57]   Zhang, Y., Li, C. and Loncar, M. (2013) Optimal Broadband Antireflective Taper. Optics Letters, 38, 646-648.

[58]   Lalanne, P. and Lemercier Lalanne, D. (1996) On the Effective Medium Theory of Subwavelength Periodic Structures. Journal of Modern Optics, 43, 2063-2085.

[59]   Taflove, A. and Hagness, S.C. (2005) Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House.

[60]   Katsidis, C.C. and Siapkas, D.I. (2002) General Transfer-Matrix Method for Optical Multilayer Systems with Coherent, Partially Coherent, and Incoherent Interference. Applied Optics, 41, 3978-3987.

[61]   Han, K. and Chang, C.H. (2014) Numerical Modeling of Sub-Wavelength Anti-Reflective Structures for Solar Module Applications. Nanomaterials, 4, 87-128.

[62]   Zienkiewicz, O.C., Taylor, R.L., Nithiarasu, P. and Zhu, J. (1977) The Finite Element Method. Volume 3, McGraw-Hill, London.

[63]   Moharam, M. and Gaylord, T. (1981) Rigorous Coupled-Wave Analysis of Planar-Grating Diffraction. Journal of the Optical Society of America, 71, 811-818.

[64]   Stavenga, D., Foletti, S., Palasantzas, G. and Arikawa, K. (2006) Light on the Moth-Eye Corneal Nipple Array of Butterflies. Proceedings of the Royal Society of London B: Biological Sciences, 273, 661-667.

[65]   Leland, R.W., Draper, B.L., Naqvi, S. and Minhas, B. (1997) Massively Parallel Solution of the Inverse Scattering Problem for Integrated Circuit Quality Control. Technical Report, Sandia National Labs, Albuquerque, NM.

[66]   Brückner, C., Pradarutti, B., Stenzel, O., Steinkopf, R., Riehemann, S., Notni, G. and Tünnermann, A. (2007) Broadband Antireflective Surface-Relief Structure for THz Optics. Optics Express, 15, 779-789.