[1] Berkowitz, B., & Scher, H. (2000). Anomalous Transport in Laboratory-Scale, Heterogeneous Porous Media. Water Resources Research, 36, 149-158.
https://doi.org/10.1029/1999WR900295
[2] Cai, J., Zhang, Z., Kang, Q. et al. (2019). Recent Advances in Flow and Transport Properties of Unconventional Reservoirs. Energies, 12, 1865-1869.
https://doi.org/10.3390/en12101865
[3] Carrera, J., Sánchez-Vila, X., Benet, I. et al. (1998). On Matrix Diffusion, Formulations, Solutions Methods and Qualitative Effects. Hydrogeology Journal, 6, 178-190.
https://doi.org/10.1007/s100400050143
[4] Delay, F., Ackerer, P., & Danquigny, C. (2005). Simulating Solute Transport in Porous or Fractured Formations Using Random Walk Particle Tracking: A Review. Vadose Zone Journal, 4, 360-379.
https://doi.org/10.2136/vzj2004.0125
[5] Delay, F., Porel, G., & Sardini, P. (2002). Modelling Diffusion in a Heterogeneous Rock Matrix with a Time-Domain Lagrangian Method and an Inversion Procedure. C.R. Geoscience, 334, 967-973.
https://doi.org/10.1016/S1631-0713(02)01835-7
[6] Dentz, M., Gouze, P., Russian, A. et al. (2012). Diffusion and Trapping in Heterogeneous Media: An Inhomogeneous Continuous Time Random Walk Approach. Advances in Water Resources, 49, 13-22.
https://doi.org/10.1016/j.advwatres.2012.07.015
[7] Dweik, J., Srour, M., Tawbe, M. et al. (2015). Solving Microscale Heterogeneous Matrix Diffusion Based on Two and Three-Dimensional Computing Using X-Ray Tomography Image Data. International Review of Physics, 9, 79-84.
[8] Gouze, P., Melean, Y., Le Borgne, T. et al. (2008). Non-Fickian Dispersion in Porous Media Explained by Heterogeneous Microscale Matrix Diffusion. Water Resources Research, 44, W11416-W11435.
https://doi.org/10.1029/2007WR006690
[9] Haggerty, R., Fleming, S. W., Meigs, L. C. et al. (2001). Tracer Tests in a Fractured Dolomite: 2. Analysis of Mass Transfer in Single-Well Injection-Withdrawal Tests. Water Resources Research, 37, 1129-1142.
https://doi.org/10.1029/2000WR900334
[10] Haggerty, R., Harvey, C. F., Schwerin, C. F. et al. (2004). What Controls the Apparent Timescale of Solute Mass Transfer in Aquifers and Soils? A Comparison of Experimental Results. Water Resources Research, 40, W01510.
https://doi.org/10.1029/2002WR001716
[11] Haggerty, R., McKenna, S. A., & Meigs, L. C. (2000). On the Late-Time Behavior of Tracer Test Breakthrough Curves. Water Resources Research, 36, 3467-3480.
https://doi.org/10.1029/2000WR900214
[12] Khrapitchev, A. A., & Callaghan, P.-T. (2003). Reversible and Irreversible Dispersion in a Porous Medium. Physics of Fluids, 15, 2649-2660.
https://doi.org/10.1063/1.1596914
[13] Le Borgne, T., & Gouze, P. (2008). Non-Fickian Dispersion in PorousMedia: 2. Model Validation from Measurements at Different Scales. Water Resources Research, 44, W06427- W06436.
https://doi.org/10.1029/2007WR006279
[14] Levy, M., & Berkowitz, B. (2003). Measurement and Analysis of Non-Fickian Dispersion in Heterogeneous Porous Media. Journal of Contaminant Hydrology, 64, 203-226.
https://doi.org/10.1016/S0169-7722(02)00204-8
[15] McCarthy, J. F. (1993). Continuous Time Random Walks on Random Media. Journal of Physics A: Mathematical and General, 26, 2495-2503.
https://doi.org/10.1088/0305-4470/26/11/004
[16] Meigs, L. C., & Beauhelm, R. L. (2001). Tracer Tests in a Fractured Dolomite: 1, Experimental Design and Observed Tracer Recoveries. Water Resources Research, 37, 1113- 1128.
https://doi.org/10.1029/2000WR900335
[17] Salamon, P., Fernàndez-Garcia, D., & Gómez-Hernández, J. J. (2006). A Review and Numerical Assessment of the Random Walk Particle Tracking Method. Journal of Contaminant Hydrology, 87, 277-305.
https://doi.org/10.1016/j.jconhyd.2006.05.005
[18] Sardini, P., Delay, F., & Hellmuth, K.-H. (2003). Interpretation of Out-Diffusion Experiments on Crystalline Rocks Using Random Walk Modelling. Journal of Contaminant Hydrology, 61, 339-350.
https://doi.org/10.1016/S0169-7722(02)00124-9
[19] Sardini, P., Robinet, J.-C., & Siitari-Kappi, M. (2007). Direct Simulation of Heterogeneous Diffusion and Inversion Procedure Applied to an Out-Diffusion Experiment. Test Case of Palmottugranite. Journal of Contaminant Hydrology, 93, 21-37.
https://doi.org/10.1016/j.jconhyd.2007.01.011
[20] Shapiro, A. M. (2001). Effective Matrix Diffusion in Kilometer-Scale Transport in Fractured Crystalline Rock. Water Resources Research, 37, 507-522.
https://doi.org/10.1029/2000WR900301
[21] Zhan, H., Wang, Q., & Wen, Z. (2019). Advances in Groundwater Flow and Solute Transport: Pushing the Hidden Boundary. Water, 11, 457-460.
https://doi.org/10.3390/w11030457
[22] Zhou, L., Jing, L., & Cvetkovic, V. (2017). Modeling of Solute Transport in a 3D Rough- Walled Fracture-Matrix System. Transport in Porous Media, 116, 1005-1029.
https://doi.org/10.1007/s11242-016-0810-z
[23] Zhou, Q., Oldenburg, C.-M., Kneafsey, T.-J. et al. (2018). Modeling Transport of Multiple Tracers in Hydraulic Fractures at the, EGS Collab Test Site. In 43rd Workshop on Geothermal Reservoir Engineering (SGP-TR-213). Stanford: Stanford University.
[24] Zhoua, Q., Liua, H.-H., Molz, F. J. et al. (2007). Field-Scale Effective Matrix Diffusion Coefficient for Fractured Rock: Results from Literature Survey. Journal of Contaminant Hydrology, 93, 161-187.
https://doi.org/10.1016/j.jconhyd.2007.02.002