Back
 GEP  Vol.7 No.12 , December 2019
Geochemistry and Mineralogy of the Upper Cretaceous-Paleocene Marine Series, Iullemmeden Basin, Niger Republic
Abstract:
Major and trace elements, mineralogy as well as the total organic content of the Upper Cretaceous-Paleocene Marine Series of the Iullemmeden basin in Niger were determined in order to assess their composition, the chemistry of the paleoenvironment and the nature of the parent crystalline rocks that they evolved from. The major and trace elements were analyzed using a Bruker Tracer IV energy-dispersive hand held X-ray fluorescence spectrometer, the mineralogical analyses were done using a Bruker AXS D8 Discover, while the total organic carbon was calculated by subtraction of inorganic carbon from the total carbon, determined using a CM5014 coulometer (UIC, Joliet, IL, USA) and a LECO SC-144DR instrument. Geochemical indices calculated from major oxides such as CIA, PIA, ICV and CIW have been computed and the results show that the Marine Series are made essentially of clay minerals of the smectite group (montmorillonite), quartz and other accessory minerals like rutile and calcite. Computed ratios of some trace elements such as V/(V + Ni) and V/(V + Cr) showed that the paleoenvironment was dysoxic-oxic and the low values (<2) of the Total Organic Carbon found in the sediments are justified by those poor preservative conditions. Based on Al2O3/TiO2 ratios, the sediments were derived from intermediate to acidic igneous rocks surrounding the basin.
Cite this paper: Ali, M. , Wagani, I. and Chaanda, M. (2019) Geochemistry and Mineralogy of the Upper Cretaceous-Paleocene Marine Series, Iullemmeden Basin, Niger Republic. Journal of Geoscience and Environment Protection, 7, 1-19. doi: 10.4236/gep.2019.712001.
References

[1]   Alzouma, K. (1994). Fluctuations du niveau marin au cours du Mésozoïque et du Cénozoïque dans le bassin intracratonique des Iullemmeden (Niger, Afrique occidentale). Africa Geosciences Review, 1, 131-281.

[2]   Arabi, A. S., Dewu, B. B. M., Oladipo, M. O. A., & Funtua, I. I. (2017). Mineralogy and Rheology of Raw and Activated Turonian to Coniacian Clays from Benue Trough, Northeastern Nigeria. Egyptian Journal of Petroleum, 27, 75-88.
https://doi.org/10.1016/j.ejpe.2017.01.004

[3]   Bellion, T. (1987). Histoire géodynamique post-paléozoique de l’afrique de l’ouest d’après l’étude de quelques bassins sédimentaires (sénégal, taoudenni, iullemmeden, tchad).

[4]   Bhatia, M. R. (1983). Plate Tectonics and Geochemical Composition of Sandstones. The Journal of Geology, 91, 611-627.
https://doi.org/10.1086/628815

[5]   Bhatia, M. R., & Crook, K. A. W. (1986). Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins. Contributions to Mineralogy and Petrology, 92, 181-193.
https://doi.org/10.1007/BF00375292

[6]   Boeckh, E. (1965). Contribution à l’étude hydrogéologique de la zone sédentaire de la République 288 du Niger. Ministère des Travaux publics et des Mines de la république du Niger. Technical 289 Report DAK 64-A 20, Dakar, Senegal: BRGM/BFBH.

[7]   Breit, G. N., & Wanty, R. B. (1991). Vanadium Accumulation in Carbonaceous Rocks: A Review of Geochemical Controls during Deposition and Diagenesis. Chemical Geology, 91, 83-97.
https://doi.org/10.1016/0009-2541(91)90083-4

[8]   Brodbeck, J. F., Burri, M., Ibrahim, I., Pellet, P., & Schroeter, P. (1987). Region de Dakoro, état des 291 Connaissances. Report to Ministère de l’Hydraulique et d’Environ- nement, Direction des 292 Ressources en Eau, République du Niger.

[9]   Cox, R., Lowe, D. R., & Cullers, R. L. (1995). The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States. Geochimica et Cosmochimica Acta, 59, 2919-2940.
https://doi.org/10.1016/0016-7037(95)00185-9

[10]   Cullers, R. L. (2000). The Geochemistry of Shales, Siltstones and Sandstones of Pennsylvanian-Permian Age, Colorado, USA: Implications for Provenance and Metamorphic Studies. Lithos, 51, 181-203.
https://doi.org/10.1016/S0024-4937(99)00063-8

[11]   Dai, S., Li, T., Jiang, Y., Ward, C. R., Hower, J. C., Sun, J., Liu, J., Song, H., Wei, P., Li, Q., Xie, P., & Huang, Q. (2015). Mineralogical and Geochemical Compositions of the Pennsylvanian Coal in the HailiushuMine, Daqingshan Coalfield, Inner Mongolia, China: Implications of Sediment-Source Region and Acid Hydrothermal Solutions. International Journal of Coal Geology, 137, 92-110.
https://doi.org/10.1016/j.coal.2014.11.010

[12]   Dickinson, W. R., & Suczek, C. A. (1979). Plate Tectonics and Sandstone Composition. AAPG Bulletin, 63, 2164-2182.
https://doi.org/10.1306/2F9188FB-16CE-11D7-8645000102C1865D

[13]   Dikouma, M. (1990). Fluctuations du niveau marin au Maastritchien et au Paléocène dans le bassin intracratonic des Iullemmeden (Ader Doutchi-Niger) (272 p.). Thèse de Doctorat, Dijon: University of Burgundy

[14]   Dikouma, M., Alzouma, K., Lang, J., Laurin, B., Pascal, A, Trichet, J., Carbonnel, G., & Tintant, H. (1987). Maastrichien and Paleocene Transgressions and Regression in Western Niger: Shoreline Oscillations (pp. 337). Terra Cognita EUG IV.

[15]   Fisher, R. V., & Schminck, H. U. (1984). Pyroclastic Rocks (472 p.). Berlin, Heidelberg, New York, Tokyo: Spinger-Verlag.

[16]   Floyd, P. A., Franke, W., Shail, R., & Dorr, W. (1989). Geochemistry and Tectonic Setting of Lewisian Clastic Metasediments from the Early Proterozoic Loch Maree Group of Gairloch, NW Scotland. Precambrian Research, 45, 203-214.
https://doi.org/10.1016/0301-9268(89)90040-5

[17]   Galarraga, F., Reategui, K., Martïnez, A., Martínez, M., Llamas, J. F., & Márquez, G. (2008). V/Ni Ratio as a Parameter in Palaeoenvironmental Characterisation of Non- Mature Medium-Crude Oils from Several Latin American Basins. Journal of Petroleum Science and Engineering, 61, 9-14.
https://doi.org/10.1016/j.petrol.2007.10.001

[18]   Gerbeaud, O. (2006). Evolution structurale du bassin de Tim Mersoï: Le rôle des déformations de la couverture sédimentaire sur la mise en place des gisements uranifères du secteur d’Arlit (Niger) (260 p). Thèse de Doctorat, Orsay, France: Université de Paris Sud.

[19]   Gourouza, M., Natatou, I., & Boos A. (2011). Physico-Chemical Characterisation of Sabon-Karré’s Clay. Journal of Materials and Environmental Science, 2, 415-422.

[20]   Gourouza, M., Zanguina, A., Natatou, I., & Boos, A. (2013). Caracterisation d’une argile mixte du Niger Characterization of a Mixed Clay Niger. Revue CAMES Sciences des Structures et de la Matière, 1, 29.

[21]   Graver, J. I., & Scott, T. J., (1995). Trace Elements in Shale as Indicators of Crustal Provenance and Terrain Accretion of the Southern Canadian Cordillera. Geological Society of America Bulletin, 107, 440-453.

[22]   Greigert, J. (1966). Formations crétacé et tertiaires du bassin des iullemmeden (afrique occidentale). In Direction Des Mines Et De La Géologie, République Du Niger (pp. 234). Publication No. 2 Anonymous Editions du Bureau de Recherche Géologiques et Minières.

[23]   Greigert, J. (1979). Atlas des Eaux souterraines du Niger, état des Connaissances (Mai 1978), 295 Tome 1, Fasicule I. Généralités sur la Géologie, la Climatologie, l’Hydrologie et les Unités 296 aquifères. Report to Ministère des Mines et de l’Hydraulique, République du Niger. Orléans, France: Bureau des 297 Recherches géologiques et minières.

[24]   Greigert, J., & Pougnet, R. (1967). Essai De Description Des Formations Géologiques De La République Du Niger.

[25]   Hallberg, R. O. (1976). A Geochemical Method for Investigation of Palaeoredox Conditions in Sediments. Ambio, 4, 139-147.

[26]   He, B., Xu, Y. G., Zhong, Y. T., & Guan, J. P. (2010). The Guadalupian-Lopingian Boundary Mudstones at Chaotian (SW China) Are Clastic Rocks Rather Than Acidic Tuffs: Implication for a Temporal Coincidence between the End-Guadalupian Mass Extinction and the Emeishan Volcanism. Lithos, 119, 10-19.
https://doi.org/10.1016/j.lithos.2010.06.001

[27]   Hofmann, P., Ricken, W., Schwark, L., & Leythaeuser, D. (2001). Geochemical Signature and Related Climatic-Oceanographic Processes for Early Albian Black Shales: Site 417D, North Atlantic Ocean. Cretaceous Research, 22, 243-257.
https://doi.org/10.1006/cres.2001.0253

[28]   Karche J. P., & Vachette M. (1976). Migration des complexes sub-volcaniques à structures annulaires du Niger. Conséquences. Comptes rendus de l'Académie des Sciences, Paris, 282.

[29]   Kogbe, C. A. (1981). Cretaceous and Tertiary of the Iullemmeden Basin in Nigeria (West Africa). Cretaceous Research, 2, 129-186.
https://doi.org/10.1016/0195-6671(81)90007-0

[30]   Mathey, B., Lang, J., Pierre, C., & Alzouma, K. (1991). Effets combinés de l’eustatisme et des variations climatiques: l’exemple des premières transgressions du crétacé supérieur dans le bassin des Iullemmeden (Niger). Conséquences. Comptes rendus de l'Académie des Sciences Paris, 312, 523-528.

[31]   McLennan, S. M., & Taylor, S. R. (1991). Sedimentary Rocks and Crustal Evolution, Tectonic Setting and Secular Trends. Journal of Geology, 99, 1-21.
https://doi.org/10.1086/629470

[32]   McLennan, S. M., Nance, W. B., & Taylor, S. R. (1980). Rare Earth Element-Thorium Correlation in Sedimentary Rocks and the Composition of the Continental Crust. Geochimica et Cosmochimica Acta, 44, 1833-1839.
https://doi.org/10.1016/0016-7037(80)90232-X

[33]   Meister, C., Alzouma, K., Lang, J., Mathey, B., & Pascal, A. (1992). Les ammonites du Niger (Afrique Occidentale) et la transgression transaharienne au cours du Cenomanien-Turonien. Géobios, 25, 55-100.
https://doi.org/10.1016/S0016-6995(09)90038-9

[34]   Moosavirad, S. M., Janardhana, M. R., Sethumadhav, M. S., Moghadam, M. R., & Shankara, M. (2011). Geochemistry of Lower Jurassic Shales of the Shemshak Formation, Kerman Province, Central Iran: Provenance, Source Weathering and Tectonic Setting. Geochemistry, 71, 279-288.
https://doi.org/10.1016/j.chemer.2010.10.001

[35]   Moumouni, A., & Fryar, A. E. (2017). Controls on Groundwater Quality and Dug-Well Asphyxiation Hazard in Dakoro Area of Niger. Groundwater for Sustainable Development, 5, 235-243.
https://www.elsevier.com/locate/gsd
https://doi.org/10.1016/j.gsd.2017.08.004


[36]   Nesbitt, H. W., & Young, G. M. (1982). Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299, 715-717.
https://doi.org/10.1038/299715a0

[37]   Parrish, J. T., & Curtis, R. L. (1982). Atmospheric Circulation, Upwelling, and Organic-Rich Rocks in the Mesozoic and Cenozoic Eras. Palaeogeography, Palaeoclimatology, Palaeoecology, 40, 31-66.
https://doi.org/10.1016/0031-0182(82)90084-0

[38]   Pascal, A., Alzouma, K., Lang, J., Mathey, B., & Meister, C. (1991). Les transgressions Cénomano-turoniennes dans le basin des Iullemmeden (Niger): Apports de l(analyse des argiles et des elements en traces. Géologie Alpine Mémoire, No. 17, 99.

[39]   Peters, K. E., & Moldowan, J. M. (1993). The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Englewood Cliffs, NJ: Prentice-Hall, Inc.

[40]   Pettijohn, F. J. (1975). Sedimentary Rocks (3rd ed. 628 p.). New York: Harper and Row.

[41]   Pi, D. H., Jiang, S. Y., Luo, L., Yang, J. H., & Ling, H. F. (2014). Depositional Environments for Stratiform Witherite Deposits in the Lower Cambrian Black Shale Sequence of the Yangtze Platform, Southern Qinling Region, SW China: Evidence from Redoxsensitive Trace Element Geochemistry. Palaeogeography, Palaeoclimatology, Palaeoecology, 398, 125-131.
https://doi.org/10.1016/j.palaeo.2013.09.029

[42]   Rat, P., Lang, J., Alzouma, K., Dikouma, M., Johnson, A., Laurin, B., Mathey, B., & Pascal, A. (1991). Coastal Marine Basins as Records of Continental Paleoenvironments (Gulf of Guinea and Iullemmeden Cretaceous and Tertiary Basins). Journal of African Earth Sciences (and the Middle East), 12, 23-30.
https://doi.org/10.1016/0899-5362(91)90054-3

[43]   Roser, B. P., & Korsch, R. J. (1986). Determination of Tectonic Setting of Sandstone- Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio. The Journal of Geology, 94, 635-650.
https://doi.org/10.1086/629071

[44]   Roser, B. P., & Korsch, R. J. (1988). Provenance Signatures of Sandstone-Mudstone Suites Determined Using Discriminant Function Analysis of Major-Element Data. Chemical Geology, 67, 119-139.
https://doi.org/10.1016/0009-2541(88)90010-1

[45]   Rowe, H., Hughes, N., & Robinson, K. (2012). The Quantification and Application of Handheld Energy-Dispersive X-Ray Fluorescence (ED-XRF) in Mudrock Chemostratigraphy and Geochemistry. Chemical Geology, 324-325, 122-131.
https://doi.org/10.1016/j.chemgeo.2011.12.023

[46]   Sempéré, T. (1981). Le contexte sédimentaire du gisement d’uranium d’Arlit (République du Niger) (382 p.). Thèse de doctorat, Paris: ENSMP.

[47]   Suttner, L. J., & Dutta, P. K. (1986). Alluvial Sandstones Composition and Paleoclimate, I, Framework Mineralogy. SEPM Journal of Sedimentary Research, 56, 329-345.
https://doi.org/10.1306/212F8909-2B24-11D7-8648000102C1865D

[48]   Wagani, I. (2007). Potentialité uranifère des sources volcaniques envisageable pour la formation des minéralisations de la région d’Arlit (Niger) (283 p.). Thèse de Doctorat de l’Université Paris-Sud.

[49]   Wanty, R. B., & Goldhaber, M. B. (1992). Thermodynamics and Kinetics of Reactions Involving Vanadium in Natural Systems: Accumulation of Vanadium in Sedimentary Rocks. Geochimica et Cosmochimica Acta, 56, 1471-1483.
https://doi.org/10.1016/0016-7037(92)90217-7

[50]   Yahaya, M. (1992). Dynamique sédimentaire du Guézouman et des formations viséennes sous-jacentes en liaison avec la tectonique, le volcanisme et le climat, paléomilieux des gîtes uranifères d’Arlit (Niger) (357 p). Thèse Doctorat troisième cycle, Dijon: Université de Dijon.

[51]   Zhou, C. M., & Jiang, S. Y. (2009). Palaeoceanographic Redox Environments for the Lower Cambrian Hetang Formation in South China: Evidence from Pyrite Framboids, Redoxsensitive Trace Elements, and Sponge Biota Occurrence. Palaeogeography, Palaeoclimatology, Palaeoecology, 271, 279-286.
https://doi.org/10.1016/j.palaeo.2008.10.024

 
 
Top