Back
 JBM  Vol.7 No.12 , December 2019
In Vitro Evaluation of the Potential Antioxidant of Bidens segetum Mart. ex Colla (Asteraceae) in Melanocyte and Melanoma Cells
Abstract: Bidens segetum Martius ex Colla known as the “picão do mato”, is an herbaceous plant that occurs in the Cerrado biome of some Brazilian states. Among the species of Bidens, we highlight B. pilosa known as “picão preto”, of which several activities are reported as antioxidant and antibacterial. Ethanolic extract from Bidens segetum (EEBs) showed an-tioxidant potential when analyzed by free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and antifungal activity against Cladosporium cladosporiodes and C. sphareospermum fungi. PFFR3.3 subfraction from EEBs has 81.5% of 5-O caffeoylquinic acid (5-CQA) and potential antioxidant (DPPH). However, PFFR3.3 did not decrease superoxide anion in metastatic melanoma cells by dihydroeth-idium assay (DHE). PP4 subfraction is a mixture of polyacetylenes that has antifungal (Cladosporium) and antioxidant activity, since reduced superoxide anion amount in melanoma cells after 5 min of treatment. However, no dose-response and time-response curve were observed, not even with the authentic standard (5-CQA). Complementary chemical studies will be performed to confirm the polyacetylenes and 5-CQA structures present in the EEBs from B. segetum and new methodologies should be performed to confirm the antioxidant activity of these com-pounds and the effects on melanocytes and melanomas.
Cite this paper: Franco, S. , Ferreira, M. , de Melo, F. , Soares, J. and Torres, L. (2019) In Vitro Evaluation of the Potential Antioxidant of Bidens segetum Mart. ex Colla (Asteraceae) in Melanocyte and Melanoma Cells. Journal of Biosciences and Medicines, 7, 112-125. doi: 10.4236/jbm.2019.712010.
References

[1]   Lorenzi, H. and Matos, F.J.A. (2002) Plantas medicinais do Brasil. 4th Edition, Ed. Plantarum, Nova Odessa, 576.

[2]   Julio, P.G.S. and Oliveira, D.M.T. (2009) Morfoanatomia comparada e ontogênese do pericarpo de Bidens gardneri Baker e B. pilosa L. (Asteraceae). Revista Brasileira de Botânica, 109-116.
https://doi.org/10.1590/S0100-84042009000100011

[3]   Strother, J.L. and Weedon, R.R. (2006) Bidens. In: Flora of North America Editorial Committee, Eds., Flora of North America 21, New York and Oxford, 205-218.

[4]   Rodrigues, V.E.G. and Carvalho de, D.A. (2001) Levantamento etnobotânico de plantas medicinais no domínio do Cerrado na região do Alto Rio Grande—Minas Gerais. Ciências Agrotécnica, 1, 102-123.

[5]   Brandão, M.G.L., Krettli, A.U., Soares, L.S.R., Nery, C.G.C. and Marinuzzi, H.C. (1997) Antimalarial Activity of Extracts and Fractions from Bidens pilosa and Other Bidens Species (Asteraceae) Correlated with the Presence of Acetylene and Flavonoid Compounds. Journal of Ethnopharmacology, 57, 131-138.
https://doi.org/10.1016/S0378-8741(97)00060-3

[6]   Nowill, A.E., Queiroga, C.L., Franchi Junior, G.C. and Grombone, M.T.G. (2007) Process for Obtaining an Antineoplasic Phytotherapeutic Compound Derived from an Extract from the Plant Bidens alba. WO/2007/068071.

[7]   Oliveira, F.Q., Andrade-Neto, V., Krettli, A.U. and Brandão, M.G.L. (2004) New Evidences of Antimalarial Activity of Bidens pilosa Roots Extract Correlated with Polyacetylene and Flavonoids. Journal of Ethnopharmacology, 93, 39-42.
https://doi.org/10.1016/j.jep.2004.03.026

[8]   Lee, W.-C., Peng, C.-C., Chang, C.-H., Huei, S. and Chyau, C.-C. (2013) Extraction of Antioxidant Components from Bidens pilosa Flowers and Their Uptake by Human Intestinal Caco-2 Cells. Molecules, 18, 1582-1601.
https://doi.org/10.3390/molecules18021582

[9]   Kviecinski, M.R., Benelli, P., Felipe, K.B., Correia, J.F.G., Pich, C.T., Ferreira, S.R.S., Ferreira and Pedrosa, R.C. (2011) SFE from Bidens pilosa Linné to Obtain Extracts Rich in Cytotoxic Polyacetylenes with Antitumor. The Journal of Supercritical Fluids, 56, 243-248.
https://doi.org/10.1016/j.supflu.2010.12.011

[10]   Christensen, L.P. and Lan, J. (1991) Acetylenes and Related Compounds in Heliantheae. Phytochemistry, 30, 11-49.
https://doi.org/10.1016/0031-9422(91)84096-B

[11]   Wat, C.K., Johns, T. and Towers, G.H.N. (1980) Phototoxic and Antibiotic Activities of Plants of the Asteraceae Used in Folk Medicine. Journal of Ethnopharmacology, 2, 279-290.
https://doi.org/10.1016/S0378-8741(80)81006-3

[12]   Chang, S.L., Chang, C.L., Chiang, Y.M., Hsieh, R.H., Tzeng, C.R., Wu, T.K., Sytwu, H.K., Shyur, L.F. and Yang, W.C. (2004) Polyacetylenic Compounds and Bu-tanol Fraction from Bidens pilosa Can Modulate the Differentiation of Helper T Cells and Prevent Autoimmune Diabetes in Non-Obese Diabetic Mice. Planta Medica, 70, 1045-1051.
https://doi.org/10.1055/s-2004-832645

[13]   Alvarez, L., Marquina, S., Villarreal, M.L., Alonso, D., Aranda, E. and Delgado, G. (1996) Bioactive Polyacetylenes from Bidens pilosa. Planta Medica, 4, 355-357.
https://doi.org/10.1055/s-2006-957902

[14]   Silveira, C.S., Martins, F.O., Costa, C.S., Romanos, M.T.V., Kaplan, M.A.C. and Menezes, F.S. (2009) In Vitro Cytotoxic, Antioxidant and Antiviral Effects of Pterocaulon alopecuroides and Bidens segetum Extracts. Revista Brasileira de Farmacognosia, 19, 343-348.
https://doi.org/10.1590/S0102-695X2009000300001

[15]   Ray Paul, D., Huang, B.-W. and Tsuji, Y. (2012) Reactive Oxygen Species (ROS) Homeostasis and Redox Regulation in Cellular Signaling. Cellular Signaling, 24, 981-990.
https://doi.org/10.1016/j.cellsig.2012.01.008

[16]   Zorov, D.B., Juhaszova, M. and Sollott, S.J. (2014) Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release. Physiological Reviews, 94, 909-950.
https://doi.org/10.1152/physrev.00026.2013

[17]   Ferreira, A.L.A. and Matsubara, L.S. (1997) Radicais Livres: Conceitos, doencas relacionadas, sistema de defesa e estresse oxidativo. Revista da Associacão Médica Brasileira, 43, 61-68.
https://doi.org/10.1590/S0104-42301997000100014

[18]   Ibanez, I.L., Notcovich, C., Policastro, L.L. and Durán, H. (2011) Breakthroughs in Melanoma Research. In: Tanaka, Y., Ed., Reactive Oxygen Species in the Biology of Melanoma, InTech, London, 3-23.

[19]   Sander, C.S., Chang, H., Hamm, F., Elsner, P. and Thiele, J.J. (2004) Role of Oxidative Stress and the Antioxidant Network in Cutaneous Carcinogenesis. International Journal of Dermatology, 43, 326-335.
https://doi.org/10.1111/j.1365-4632.2004.02222.x

[20]   Denat, L., Kadekaro, A.L., Marrot, L., Leachman, S.A. and Abdel-Malek, Z.A. (2014) Melanocytes as Instigators and Victims of Oxidative Stress. Journal of Investigative Dermatology, 134, 1512.
https://doi.org/10.1038/jid.2014.65

[21]   Molognoni, F., de Melo, F.H.M., Da Silva, C.T. and Jasiulionis, M.G. (2013) Ras and Rac1, Frequently Mutated in Melanoma, Are Activated by Superoxide Anion, Modulate Dnm1 Level and Are Causally Related to Melanocyte Malignant Transformation. PLoS ONE, 8, e81937.
https://doi.org/10.1371/journal.pone.0081937

[22]   Melo, F.H., Molognoni, F., Morais, A.S., Toricelli, M., Mouro, M.G., Higa, E.M., Lopes, J.D. and Jasiulionis, M.G. (2011) Endothelial Nitric Oxide Synthase Uncoupling as a Key Mediator of Melanocyte Malignant Transformation Associated with Sustained Stress Conditions. Free Radical Biology & Medicine, 50, 1263-1273.
https://doi.org/10.1016/j.freeradbiomed.2011.02.022

[23]   Campos, A.C., Molognoni, F., Melo, F.H., Galdieri, L.C., Carneiro, C.R., D’Almeida, V., Correa, M. and Jasiulionis, M.G. (2007) Oxidative Stress Modulates DNA Methylation during Melanocyte Anchorage Blockade Associated with Malignant Transformation. Neoplasia, 9, 1111-1121.
https://doi.org/10.1593/neo.07712

[24]   Hong, Y., Song, B., Chen, H.D. and Gao, X.H. (2015) Melanocytes and Skin Immunity. Journal of Investigative Dermatology Symposium Proceedings, 1, 37-39.
https://doi.org/10.1038/jidsymp.2015.14

[25]   Figueiredo, L.C., Cordeiro, L.N., Arruda, A.P., Carvalho, M.D.F., Ribeiro, E.M. and Coutinho, H.D.M. (2003) Câncer de pele: Estudo dos principais marcadores moleculares do melanoma cutâneo. Revista Brasileira de Ginecologia, 49, 179-183.

[26]   Rosolen, D., Kretzer, I.F., Winter, E., Noldin, V.F., do Carmo, í.A.R., Filippin-Monteiro, F.B. and Creczynski-Pasa, T.B. (2016) N-Phenylmaleimides Affect Adipogenesis and Present Antitumor Activity through Reduction of FASN Expression. Chemical-Biological Interactions, 258, 10-20.
https://doi.org/10.1016/j.cbi.2016.08.005

[27]   Ali, Z., Yousaf, N. and Larkin, J. (2013) Melanoma Epidemiology, Biology and Prognosis. EJC Supplements, 2, 81.
https://doi.org/10.1016/j.ejcsup.2013.07.012

[28]   Mouawad, R., Sebert, M., Michels, J., Bloch, J., Spano, J.P. and Khayat, D. (2010) Treatment for Metastatic Malignant Melanoma: Old Drugs and New Strategies. Critical Reviews in Oncology/Hematology, 74, 27-39.
https://doi.org/10.1016/j.critrevonc.2009.08.005

[29]   Bhatia, S., Tykodi, S.S. and Thompson, J.A. (2009) Treatment of Metastatic Melanoma: An Overview. Oncology (Williston Park, NY), 23, 488.

[30]   Homans, A.L. and Fuchs, A. (1970) Direct Bioautography on Thin-Layer Chromatograms as a Method for Detecting Fungitoxic Substances. Journal of Chromatography, 51, 327-329.
https://doi.org/10.1016/S0021-9673(01)96877-3

[31]   Molyneux, P. (2004) The Use of the Stable Free Radical Dephenylpicrylhydrazil (DPPH) for Estimating Antioxidant Activity Songklanakarin. Journal of Science and Technology, 26, 211-219.

[32]   Silva, C.G., Herdeiro, R.S., Mathias, C.J., Panek, A.D., Silveira, C.S., Rodrigues, V.P., Renno, M.N., Falcao, D.Q., Cerqueira, D.M., Minto, A.B.M., Nogueira, F.L.P., Quaresma, C.H., Silva, J.F.M., Menezes, F.S. and Eleutherio, E.C.A. (2005) Evaluation of Antioxidant Activity of Brazilian Plants. Pharmacological Research, 52, 229-233.
https://doi.org/10.1016/j.phrs.2005.03.008

[33]   Kweon, M.H., Hwang, H.J. and Sung, H.C. (2001) Identification and Antioxidant Activity of Novel Chlorogenic Acid Derivatives from Bamboo (Phyllostachys edulis). Journal of Agricultural and Food Chemistry, 49, 4646-4655.
https://doi.org/10.1021/jf010514x

[34]   Wang, G.F., Shi, L.P., Ren, Y.D., Liu, Q.F., Liu, H.F., Zhang, R.J., Li, Z., Zhu, F.H., He, P.L., Tang, W., Tao, P.Z., Li, C., Zhao, W.M. and Zuo, J.P. (2009) Anti-Hepatitis B Virus Activity of Chlorogenic Acid, Quinic Acid and Caffeic Acid in Vivo and in Vitro. Antiviral Research, 83, 186-190.
https://doi.org/10.1016/j.antiviral.2009.05.002

[35]   Tamayose, C.I., Santos, E.A., Roque, N., Costa-Lotufo, L.V. and Ferreira, M.J.P. (2019) Caffeoylquinic Acids: Separation Method, Antiradical Properties and Cytotoxicity. Chemistry & Biodiversity, 16, e1900093.
https://doi.org/10.1002/cbdv.201900093

[36]   Tamayose, C.I., Torres, P., Roque, N. and Ferreira, M.J.P. (2019) HIV-1 Reverse Transcriptase Inhibitory Activity of Flavones and Chlorogenic Acid Derivatives from Moquiniastrum floribundum (Asteraceae). South African Journal of Botany, 123, 142-146.
https://doi.org/10.1016/j.sajb.2019.02.005

[37]   Wu, J., Wan, Z., Yi, J., Wu, Y., Peng, W. and Wu, J. (2013) Investigation of the Extracts from Bidens pilosa Linn. var. radiata Sch. Bip. for Antioxidant Activities and Cytotoxicity against Human Tumor Cells. Journal of Natural Medicines, 1, 17-26.
https://doi.org/10.1007/s11418-012-0639-x

[38]   Ogawa, K. and Sashida, Y. (1992) Caffeoyl Derivatives of Sugar Lactone and Its Hydroxy Acid from the Leaves of Bidens pilosa. Phytochemistry, 3, 3657-3658.
https://doi.org/10.1016/0031-9422(92)83752-K

[39]   Bauer, R.K. and Davis, B. (1992) Four Polyacetylene Glucosides from Bidenscampylotheca. Phytochemistry, 31, 2035-2037.
https://doi.org/10.1016/0031-9422(92)80357-K

 
 
Top