Back
 JAMP  Vol.7 No.12 , December 2019
The Effect of Injected Energy on Low Energy Single Longitudinal Mode Pre-Lase Q-Switched Pr:YLF Laser
Abstract:
In this paper, the effect of injected energy on low energy single longitudinal mode (SLM) pre-lase Q-switched is analyzed and the optimization procedure is shown in detail. Here, taking the Pr:YLF laser as an example of low energy laser, and the parameters of Pr:YLF laser by using pre-lase have been shown. Compared with normal Q-switched laser, the single pulse energy reaches 60.16% and the pulse width exceeds 39.73% when the same maximum energy is injected and SLM is achieved in pre-lase. The analysis results show that pre-lase is suitable for low energy laser to obtain SLM and there be an optimal performance to achieve the optimal energy output.
Cite this paper: Dai, W. , Jin, L. , Dong, Y. , Zhang, X. and Jin, G. (2019) The Effect of Injected Energy on Low Energy Single Longitudinal Mode Pre-Lase Q-Switched Pr:YLF Laser. Journal of Applied Mathematics and Physics, 7, 2968-2978. doi: 10.4236/jamp.2019.712207.
References

[1]   Wu, C.T., Ju, Y.L., Zhou, R.L., Duan, X.M. and Wang, Y.Z. (2011) Achieving Single-Longitudinal-Mode Output about Tm:YAG Laser at Room Temperature. Laser Physics, 21, 372-375. https://doi.org/10.1134/S1054660X11030212

[2]   Sridhar, G., Rawat, V.S., Kawade, N., Singh, S. and Gantayet, L.M. (2010) Physics and Technology of Tunable Pulsed Single Longitudinal Mode Dye Laser. Pramana, 75, 807-816. https://doi.org/10.1007/s12043-010-0163-z

[3]   Liaw, S.K., Wang, S., Shin, C.S., Chen, N.K., Hsu, K.C. and Manshina, A. (2010) Single-Longitudinal-Mode Linear-Cavity Fiber Laser Using Multiple Subring-Cavities. Laser Physics, 20, 1608-1611. https://doi.org/10.1134/S1054660X10130128

[4]   Ahmad, H., Azhari, N.S., Zulkifli, M.Z., Muhammad, F.D. and Harun, S.W. (2014) S-Band SLM Distributed Bragg Reflector Fiber Laser. Laser Physics, 24, 24. https://doi.org/10.1088/1054-660X/24/6/065109

[5]   Davey, R.P., Fleming, R.P.E., Smith, K., Kashyap, R. and Armitage, J.R. (1991) Mode-Locked Erbium Fibre Laser with Wavelength Selection by Means of Fibre Bragg Grating Reflector. Electronics Letters, 27, 2087-2088. https://doi.org/10.1049/el:19911292

[6]   Baxter, G.W., Schlup, P. and Mckinnie, I.T. (2000) Efficient, Single Frequency, High Repetition Rate, PPLN OPO Pumped by a Prelase Q-Switched Diode-Pumped Nd:YAG Laser. Applied Physics B, 70, 301-304. https://doi.org/10.1007/s003400050049

[7]   Owyoung, A., Hadley, G.R., Esherick, P., Schmitt, R.L. and Rahn, L.A. (1985) Gain Switching of a Monolithic Single-Frequency Laser-Diode-Excited Nd:YAG Laser. Opt Lett (United States), 10, 484-486. https://doi.org/10.1364/OL.10.000484

[8]   Crawford, T., Lowrie, C. and Hompson, J.R. (1996) Prelase Stabilization of the Polarization State and Frequency of a Q-Switched, Diode-Pumped, Nd:YAG Laser. Applied Optics, 35, 5861-5869. https://doi.org/10.1364/AO.35.005861

[9]   Resan, B. and Coadou, E. (2011) Ultrashort Seed-Pulse Generating Laser with Integral Pulse Shaping. US 7894493 B2.

[10]   Barnes, N.P. and Barnes, J.C. (1993) Injection Seeding I: Theory. IEEE Journal of Quantum Electronics, 29, 2670-2683. https://doi.org/10.1109/3.250390

[11]   Yu, J.R., Singh, U.N. and Barnes, P. (1988) 125-mJ Diode-Pumped Injection Seeded Ho:Tm:YLF Laser. Optics Letters, 23, 780-782. https://doi.org/10.1364/OL.23.000780

[12]   Hanna, D.C., Luther-Davies, B., Rutt, H.N. and Smith, R.C. (1971) A Two-Step Q-Switching Technique for Producing High Power in a Single Longitudinal Mode. Opto-Electronics, 3, 163-169. https://doi.org/10.1007/BF01419332

[13]   Xu, B., Liu, Z., Xu, H., Cai, Z., Zeng, C. and Huang, S. (2013) Highly Efficient InGaN-LD-Pumped Bulk Pr:YLF Orange Laser at 607 nm. Optics Communications, 305, 96-99. https://doi.org/10.1016/j.optcom.2013.05.002

[14]   Li, X.D., Yu, X., Yan, R.P., Fan, R.W. and Chen, D.Y. (2011) Optical and Laser Properties of Pr3+:YLF Crystal. Laser Physics Letters, 8, 791-794. https://doi.org/10.1002/lapl.201110069

[15]   Jelínková, H. and Fibrich, M. (2009) Electro-Optically Q-Switched Pr:YAP Laser Generating at 747 nm. Laser Physics Letters, 6, 517-520. https://doi.org/10.1002/lapl.200910028

[16]   Fu, X.H., Li, Y.L. and Jiang, H.L. (2011) Diode-Pumped Pr3+:YAlO3/LBO Violet Laser at 374 nm. Laser Physics, 21, 864-866. https://doi.org/10.1134/S1054660X11090088

[17]   Svelto, O. (2010) Principles of Lasers. Springer. https://doi.org/10.1007/978-1-4419-1302-9

[18]   Dai, T.Y., Wu, J. and Zhang, Z.G. (2015) Diode-End-Pumped Single-Longitudinal- Mode Er:LuAG Laser with Intracavity Etalons at 1.6μm. Applied Optics, 54, 9500. https://doi.org/10.1364/AO.54.009500

[19]   Sooy, W.R. (1965) The Natural Selection of Modes in a Passive Q-Switched Laser. Applied Physics Letters, 7, 36-37. https://doi.org/10.1063/1.1754286

[20]   Degnan, J.J. (1989) Theory of the Optimally Coupled Q-Switched Laser. IEEE Journal of Quantum Electronics, 25, 214-220. https://doi.org/10.1109/3.16265

 
 
Top