Back
 JBM  Vol.7 No.12 , December 2019
Effect of Colchicine on Inducible Nitric Oxide Synthase Activity and Nitric Oxide Production of Mice Induced by Aggregatibacter actinomycetemcomitans
Abstract: Objective: Colchicine induced a non-protective Th2-like immunity in Aggregatibacter actinomycetemcomitans-stimulated murine immune response. The aim of the present study was to determine whether colchicine affects inducible nitric oxide synthase (iNOS) activity and nitric oxide (NO) production in A. actinomycetemcomitans-immunized mice. Materials and Methods: BALB/c mice were sham-immunized (group I) or immunized with heat-killed A. actinomycetemcomitans (group II-VII). Colchicine was injected intraperitoneally before (group III), on the same day of (group IV), or after (group V) the primary immunization and on the same day of (group VI) or after (group VII) the secondary immunization. In vitro, spleen cells from either sham- or heat-killed A. actinomycetemcomitan-immunized animals were cultured and stimulated with heat-killed A. actinomycetemcomitans in the presence or absence of colchicine with or without addition of L-arginine, Db-cAMP, forskolin or interferon-γ (IFN-γ). The levels of splenic iNOS activity and both serum and culture supernatant NO levels were assessed. Results: The results showed that colchicine did inhibit both splenic iNOS activity and serum NO levels only when the drug was injected at the same time as the immunization (group IV and VI). Splenic iNOS activity and NO levels on antigen-stimulated spleen cell cultures were also suppressed by colchicine, even in the presence of L-arginine, Db-AMP or forskolin. IFN-γ only partially restored iNOS activity and NO levels in the antigen and colchicine-treated spleen cell cultures. Conclusion: This study suggests, therefore, that colchicine may suppress the iNOS activity and NO production in A. actinomycetemcomitans-immunized mice in vivo and in vitro.
Cite this paper: Sosroseno, W. , Herminajeng, E. and Bird, P. (2019) Effect of Colchicine on Inducible Nitric Oxide Synthase Activity and Nitric Oxide Production of Mice Induced by Aggregatibacter actinomycetemcomitans. Journal of Biosciences and Medicines, 7, 18-30. doi: 10.4236/jbm.2019.712003.
References

[1]   Leung, Y.Y., Yao Hui, L.L. and Kraus, V.B. (2015) Colchicine-Update on Mechanisms of Action and Therapeutic Uses. Seminars in Arthritis and Rheumatism, 45, 341-350.
https://doi.org/10.1016/j.semarthrit.2015.06.013

[2]   Shek, P.N. and Coons, A.H. (1978) Effect of Colchicine on the Antibody Response. I. Enhancement of Antibody Formation in Mice. The Journal of Experimental Medicine, 147, 1213-1227.
https://doi.org/10.1084/jem.147.4.1213

[3]   Titus, R.G. (1991) Colchicine Is a Potent Adjuvant for Eliciting T Cell Responses. The Journal of Immunology, 146, 4115-4119.

[4]   Mizumoto, N., Gao, J., Matsushima, H., Ogawa, Y., Tanaka, H. and Takashima, A. (2005) Discovery of Novel Immunostimulants by Dendritic-Cell-Based Functional Screening. Blood, 106, 3082-3089.
https://doi.org/10.1182/blood-2005-03-1161

[5]   Dinarello, C.A., Chusid, M.J., Fauci, A.S., Gallin, J.I., Dale, D.C. and Wolff, S.M. (1976) Effect of Prophylactic Colchicine Therapy on Leukocyte Function in Patients with Familial Mediterranean Fever. Arthritis and Rheumatology, 19, 618-622.
https://doi.org/10.1002/art.1780190315

[6]   Valerius, N.H. (1978) In Vitro Effect of Colchicine on Neutrophil Granulocyte Locomotion. Assessment of the Effect of Colchicine on Chemotaxis, Chemokinesis and Spontaneous Motility, Using a Modified Reversible Boyden Chamber. Acta Pathologica et Microbiologica Scandinavica. Section B, 86, 149-154.
https://doi.org/10.1111/j.1699-0463.1978.tb00024.x

[7]   Mekori, Y.A., Baram, D., Goldberg, A. and Klajman, A. (1989) Inhibition of Delayed Hypersensitivity Reactions in Mice by Colchicine. I. Mechanism of Inhibition of Contact Sensitivity in Vivo. Cellular Immunology, 120, 330-340.
https://doi.org/10.1016/0008-8749(89)90201-3

[8]   Lyons, M.J., Amador, R., Petito, C., Nagashima, K., Weinreb, H. and Zabriskie, J.B. (1986) Inhibition of Acute Experimental Allergic Encephalomyelitis in Mice by Colchicine. The Journal of Experimental Medicine, 164, 1803-1808.
https://doi.org/10.1084/jem.164.5.1803

[9]   Alkalin, E., Hancock, W.W., Perico, N., Remuzzi, G., Imberti, O., Carperter, C.B. and Sayegh, M.H. (1995) Blocking Cell Microtubule Assembly Inhibits the Alloimmune Response in Vitro and Prolongs Renal Allograft Survival by Inhibition of Th1 and Sparing of Th2 Cell Function in Vivo. Journal of the American Society of Nephrology, 5, 1418-1425.

[10]   Balkan, E., Bilen, H., Eyerci, N., Keles, S., Kara, A., Akdeniz, N. and Dogan, H. (2018) Cytokine, C-Reactive Protein, and Heat Shock Protein mRNA Expression Levels in Patients with Active Behcet’s Uveitis. Medical Science Monitor, 24, 1511-1516.
https://doi.org/10.12659/MSM.907918

[11]   Kirikae, T., Kirikae, F., Oghiso, Y. and Nakano, M. (1996) Microtu-bule-Disrupting Agents Inhibit Nitric Oxide Production in Murine Peritoneal Macrophages Stimulated with Lipopolysaccharide or Paclitaxel (Taxol). Infection and Immunity, 64, 3379-3384.

[12]   Marczin, N., Jilling, T., Papapetropoulos, A., Go, C. and Catravas, J.D (1996) Cytoskeleton-Dependent Activation of the Inducible Nitric Oxide Synthase in Cultured Aortic Smooth Muscle Cells. British Journal Pharmacology, 118, 1085-1094.
https://doi.org/10.1111/j.1476-5381.1996.tb15510.x

[13]   Gahm, C., Holmin, S., Rudehill, S. and Mathiesen, T. (2005) Neuronal Degeneration and iNOS Expression in Experimental Brain Contusion Following Treatment with Colchicine, Dexamethasone, Tirilazad Mesylate and Nimodipine. Acta Neurochirurgica, 147, 1071-1084.
https://doi.org/10.1007/s00701-005-0590-7

[14]   Rodriguez, P.C., Ochoa, A.C. and Al-Khami, A.A. (2017) Arginine Metabolism in Myeloid Cells Shapes Innate and Adaptive Immunity. Frontiers in Immunology, 8, 93.
https://doi.org/10.3389/fimmu.2017.00093

[15]   Ozdemir, B., Ozmeric, N., Elgün, S. and Baris, E. (2016) Smoking and Gingivitis: Focus on Inducible Nitric Oxide Synthase, Nitric Oxide and Basic Fibroblast Growth Factor. Journal of Periodontal Research, 51, 596-603.
https://doi.org/10.1111/jre.12338

[16]   Lucarini, G., Tirabassi, G., Zizzi, A., Balercia, G., Quaranta, A., Rubini, C., Aspriello, S.D. (2016) Uncoupling of Vascular Endothelial Growth Factor (VEGF) and Inducible Nitric Oxide Synthase (iNOS) in Gingival Tissue of Type 2 Diabetic Patients. Inflammation, 39, 632-642.
https://doi.org/10.1007/s10753-015-0288-9

[17]   Gyurko, R., Shoji, H., Battaglino, R.A., Boustany, G., Gibson, F.C., Genco, C.A., Stashenko, P. and Van Dyke, T.E. (2005) Inducible Nitric Oxide Synthase Mediates Bone Development and P. Gingivalis-Induced Alveolar Bone Loss. Bone, 6, 472-479.
https://doi.org/10.1016/j.bone.2004.12.002

[18]   Silva, M.J., Sousa, L.M., Lara, V.P., Cardoso, F.P., Júnior, G.M., Totola, A.H., Caliari, M.V., Romero, O.B., Silva, G.A., Ribeiro-Sobrinho, A.P. and Vieira, L.Q. (2011) The Role of iNOS and PHOX in Periapical Bone Resorption. Journal of Dental Research, 90, 495-500.
https://doi.org/10.1177/0022034510391792

[19]   Herbert, B.A., Novince, C.M. and Kirkwood, K.L. (2016) Ag-gregatibacter actinomycetemcomitans, a Potent Immunoregulator of the Periodontal Host Defense System and Alveolar Bone Homeostasis. Molecular Oral Microbiology, 31, 207-227.
https://doi.org/10.1111/omi.12119

[20]   Blix, I.J.S. and Helgeland, K. (1998) LPS from Actinobacillus actinomycetemcomitans and Production of Nitric Oxide in Murine Macrophages J774. European Journal of Oral Sciences, 106, 576-581.
https://doi.org/10.1046/j.0909-8836.1998.eos106107.x

[21]   Sosroseno, W., Barid, I., Herminajeng, E. and Susilowati, H. (2002) Nitric Oxide Production by a Murine Macrophage Cell Line (RAW264.7) Induced by Lipopolysaccharide from Actinobacillus actinomycetemcomitans. Oral Microbiology and Immunology, 17, 72-78.
https://doi.org/10.1046/j.0902-0055.2001.00091.x

[22]   Sosroseno, W., Bird, P.S. and Seymour, G.J. (2011) Nitric Oxide Production by a Murine Macrophage Cell Line (RAW264.7 Cells) Stimulated with Aggregatibacter actinomycetemcomitans Surface Associated Material. Anaerobe, 17, 240-251.
https://doi.org/10.1016/j.anaerobe.2011.06.006

[23]   Jo, W.S., Yee, S.T., Yoon, S., Nam, B.H., Do, E., Jung, B.S., Jeong, S.J., Hong, S.H., Yoo, Y.H., Kang, C.D., Lim, Y.J., Jeong, M.H. and Lee, J.D. (2006) Immunostimulating Factor Isolated from Actinobacillus actinomycetemcomitans Stimulates Monocytes and Inflammatory Macrophages. Microbiology and Immunology, 50, 535-542.
https://doi.org/10.1111/j.1348-0421.2006.tb03823.x

[24]   Sosroseno, W., Herminajeng, E., Budiarti, S. and Susilowati, H. (2002) Nitric Oxide Production by Murine Spleen Cells Stimulated with Lipopolysaccharide from Actinobacillus actinomy-cetemcomitans. Anaerobe, 8, 333-339.
https://doi.org/10.1016/S1075-9964(03)00003-9

[25]   Sosroseno, W., Bird, P.S. and Seymour, G.J. (2009) Nitric Oxide Production by a Human-Like Osteoblast Cell Line (HOS Cells) Stimulated with Aggregatibacter actinomycetemcomitans Lipopolysaccharide. Oral Microbiology and Immunology, 24, 50-55.
https://doi.org/10.1111/j.1399-302X.2008.00475.x

[26]   Sosroseno, W., Musa, M., Ravichandran, M., Fikri Ibrahim, M., Bird, P.S. and Seymour, G.J. (2007) Effect of L-N6-(1-Iminoethyl)-Lysine, an Inducible Nitric Oxide Synthase Inhibitor, on Murine Immune Response Induced by Actinobacillus actinomycetemcomitans Lipopolysaccharide. Journal of Periodontal Re-search, 42, 124-130.
https://doi.org/10.1111/j.1600-0765.2006.00925.x

[27]   Sosroseno, W., Musa, M., Ravichandran, M., Ibrahim, M.F., Bird, P.S. and Seymour, G.J. (2008) Effect of Inhibition of Inducible Nitric Oxide Synthase on Murine Splenic Immune Response Induced by Aggregatibacter (actinobacillus) actinomycetemcomitans Lipopolysaccharide. European Journal of Oral Sciences, 116, 31-36.
https://doi.org/10.1111/j.1600-0722.2007.00501.x

[28]   Sosroseno, W., Bird, P.S. and Seymour, G.J. (2009) Effect of Exogenous Nitric Oxide on the Murine Splenic Immune Response Induced by Aggregatibacter actinomycetemcomitans Lipopolysaccharide. Anaerobe, 15, 95-98.
https://doi.org/10.1016/j.anaerobe.2009.01.002

[29]   Sosroseno, W., Bird, P.S. and Seymour, G.J. (2009) Effect of Exogenous Nitric Oxide on the Murine Immune Response Induced by Aggregatibacter actinomycetemcomitans Lipopolysaccharide. Journal of Periodontal Research, 44, 529-536.
https://doi.org/10.1111/j.1600-0765.2008.01157.x

[30]   Sosroseno, W. (2009) Effect of Colchicine on the Murine Immune Response Induced by Aggregatibacter actinomycetemcomitans. Biomedicine and Pharmacotherapy, 63, 221-227.
https://doi.org/10.1016/j.biopha.2008.04.004

[31]   Sosroseno, W., Herminajeng, E., Bird, P.S. and Seymmour, G.J. (2003) L-Arginine-Dependent Nitric Oxide Production of a Murine Macrophage-Like RAW 264.7 Cell Line Stimulated with Porphyromonas gingivalis Lipopolysaccharide. Oral Microbiology and Immunology, 18, 1-6.
https://doi.org/10.1046/j.0902-0055.2003.00108.x

[32]   Sosroseno, W., Musa, M., Ravichandran, M., Fikri Ibrahim, M., Bird, P.S. and Seymour, G.J. (2006) The Role of Cyclic-AMP on Arginase Activity by a Murine Macrophage Cell Line (RAW264.7) Stimulated with Lipopolysaccharide from Actinobacillus actinomycetemcomitans. Oral Microbiology and Immunology, 21, 347-352.
https://doi.org/10.1111/j.1399-302X.2006.00300.x

[33]   Galea, E. and Feinstein, D.L. (1999) Regulation of the Expression of the Inflammatory Nitric Oxide Synthase (NOS2) by Cyclic AMP. FASEB Journal, 13, 2125-2137.
https://doi.org/10.1096/fasebj.13.15.2125

[34]   Martin, E., Nathan, C. and Xie, Q.-W. (1994) Role of Interferon Regulatory Factor 1 (IRF-1) in Induction of Nitric Oxide Synthase. The Journal of Experimental Medicine, 180, 977-984.
https://doi.org/10.1084/jem.180.3.977

[35]   Akman, A., Kacaroglu, H., Donmez, L., Bacanli, A. and Alpsoy, E. (2007) Relationship between Periodontal Findings and Behcet’s Disease: A Controlled Study. Journal of Clinical Periodontology, 34, 485-491.
https://doi.org/10.1111/j.1600-051X.2007.01085.x

[36]   Arabaci, T., Kara, C. and Cicek, Y. (2009) Relationship between Periodontal Parameters and Behcet’s Disease and Evaluation of Different Treatments for Oral Recurrent Aphthous Stomatitis. Journal of Periodontal Research, 44, 718-725.
https://doi.org/10.1111/j.1600-0765.2008.01183.x

 
 
Top