Back
 OJCD  Vol.9 No.4 , December 2019
Evaluation of the TbgI2 and TbgI17 Tandem Repeat Antigens as Potential Antigens for the Diagnosis of Trypanosoma brucei rhodesiense
Abstract: Human African trypanosomiasis (HAT) affects up to half a million people every year in sub-Saharan Africa. Interruption of transmission of the disease by early diagnosis and treatment is core to the control and eventual elimination of HAT. The routine diagnostic method for HAT is light microscopy of blood samples. The present study sought to evaluate the potential of TbgI2 and TbgI17 tandem repeat antigens as candidates for the diagnosis of Trypanosoma brucei rhodesiense. The expressed proteins were purified and the antigenic reactivity evaluation was done using multiplex assay using sera obtained from HAT patients. Receiver operating characteristic analysis showed that recombinant antigen, TbgI2 had high sensitivity for sera from patients infected with T. b. rhodesiense with the area under the curve being 0.577 and a sensitivity of 0.641 and specificity 0.650. The results suggest that TbgI2 is a potential biomarker for T. b. rhodesiense HAT serodiagnostic tests.
Cite this paper: Irumva, V. , Waihenya, R. , Mwangi, A. , Kipkemboi, P. , Kaneko, S. , Teya, T. , Jepkemei, J. , Njoroge, C. , Gitari, J. , Munyao, M. , Irekwa, R. , Ng’ang’a, M. and Nzou, S. (2019) Evaluation of the TbgI2 and TbgI17 Tandem Repeat Antigens as Potential Antigens for the Diagnosis of Trypanosoma brucei rhodesiense. Open Journal of Clinical Diagnostics, 9, 152-163. doi: 10.4236/ojcd.2019.94011.
References

[1]   Sutherland, C.S., Yukich, J., Goeree, R. and Tediosi, F. (2015) A Literature Review of Economic Evaluations for a Neglected Tropical Disease: Human African Trypanosomiasis (“Sleeping Sickness”). PLoS Neglected Tropical Diseases, 9, e0003397.
https://doi.org/10.1371/journal.pntd.0003397

[2]   Migchelsen, S.J., Büscher, P., Hoepelman, A.I., Schallig, H.D. and Adams, E.R. (2011) Human African Trypanosomiasis: A Review of Non-Endemic Cases in the Past 20 Years. International Journal of Infectious Diseases, 15, e517-e524.
https://doi.org/10.1016/j.ijid.2011.03.018

[3]   Franco, J.R., Simarro, P.P., Diarra, A. and Jannin, J.G. (2014) Epidemiology of Human African Trypanosomiasis. Clinical epidemiology, 6, 257-275.
https://doi.org/10.2147/CLEP.S39728

[4]   Amin, D.N., Ngoyi, D.M., Nhkwachi, G.M., Palomba, M., Rottenberg, M., Büscher, P. and Masocha, W. (2010) Identification of Stage Biomarkers for Human African Trypanosomiasis. The American Journal of Tropical Medicine and Hygiene, 82, 983-990.
https://doi.org/10.4269/ajtmh.2010.09-0770

[5]   MacLean, L.M., Odiit, M., Chisi, J.E., Kennedy, P.G. and Sternberg, J.M. (2010) Focus-Specific Clinical Profiles in Human African Trypanosomiasis Caused by Trypanosoma brucei rhodesiense. PLoS Neglected Tropical Diseases, 4, e906.
https://doi.org/10.1371/journal.pntd.0000906

[6]   Kennedy, P.G.E. and Rodgers, J. (2019) Clinical and Neuropathogenetic Aspects of Human African Trypanosomiasis. Frontiers in Immunology, 10, 39.
https://doi.org/10.3389/fimmu.2019.00039

[7]   Kennedy, P.G. (2004) Human African Trypanosomiasis of the CNS: Current Issues and Challenges. The Journal of Clinical Investigation, 113, 496-504.
https://doi.org/10.1172/JCI200421052

[8]   Aksoy, S., Buscher, P., Lehane, M., Solano, P. and Van Den Abbeele, J. (2017) Human African Trypanosomiasis Control: Achievements and Challenges. PLoS Neglected Tropical Diseases, 11, e0005454.
https://doi.org/10.1371/journal.pntd.0005454

[9]   Bonnet, J., Boudot, C. and Courtioux, B. (2015) Overview of the Diagnostic Methods Used in the Field for Human African Trypanosomiasis: What Could Change in the Next Years? BioMed Research International, 2015, Article ID: 583262.
https://doi.org/10.1155/2015/583262

[10]   Sternberg, J.M., Gierliński, M., Biéler, S., Ferguson, M.A. and Ndung’u, J.M. (2014) Evaluation of the Diagnostic Accuracy of Prototype Rapid Tests for Human African Trypanosomiasis. PLoS Neglected Tropical Diseases, 8, e3373.
https://doi.org/10.1371/journal.pntd.0003373

[11]   Lumbala, C., Biéler, S., Kayembe, S., Makabuza, J., Ongarello, S. and Ndung’u, J.M. (2018) Prospective Evaluation of a Rapid Diagnostic Test for Trypanosoma brucei gambiense Infection Developed Using Recombinant Antigens. PLoS Neglected Tropical Diseases, 12, e0006386.
https://doi.org/10.1371/journal.pntd.0006386

[12]   Truc, P., Lejon, V., Magnus, E., Jamonneau, V., Nangouma, A., Verloo, D. and Büscher, P. (2002) Evaluation of the Micro-CATT, CATT/Trypanosoma brucei gambiense, and LATEX/T. b. Gambiense Methods for Serodiagnosis and Surveillance of Human African Trypanosomiasis in West and Central Africa. Bulletin of the World Health Organization, 80, 882-886.

[13]   Horn, D. (2014) Antigenic Variation in African Trypanosomes. Molecular and Biochemical Parasitology, 195, 123-129.
https://doi.org/10.1016/j.molbiopara.2014.05.001

[14]   Tiberti, N., Hainard, A. and Sanchez, J.C. (2013) Translation of Human African Trypanosomiasis Biomarkers towards Field Application. Translational Proteomics, 1, 12-24.
https://doi.org/10.1016/j.trprot.2013.04.001

[15]   Manful, T., Mulindwa, J., Frank, F.M., Clayton, C.E. and Matovu, E. (2010) A Search for Trypanosoma brucei rhodesiense Diagnostic Antigens by Proteomic Screening and Targeted Cloning. PLoS ONE, 5, e9630.
https://doi.org/10.1371/journal.pone.0009630

[16]   Imboden, M., Müller, N., Hemphill, A., Mattioli, R. and Seebeck, T. (1995) Repetitive Proteins from the Flagellar Cytoskeleton of African Trypanosomes Are Diagnostically Useful Antigens. Parasitology, 110, 249-258.
https://doi.org/10.1017/S0031182000080835

[17]   Sullivan, L., Wall, S.J., Carrington, M. and Ferguson, M.A. (2013) Proteomic Selection of Immunodiagnostic Antigens for Human African Trypanosomiasis and Generation of a Prototype Lateral Flow Immunodiagnostic Device. PLoS Neglected Tropical Diseases, 7, e2087.
https://doi.org/10.1371/journal.pntd.0002087

[18]   Nzou, S.M., Fujii, Y., Miura, M., Mwau, M., Mwangi, A.W., Itoh, M. and Kaneko, S. (2016) Development of Multiplex Serological Assay for the Detection of Human African Trypanosomiasis. Parasitology International, 65, 121-127.
https://doi.org/10.1016/j.parint.2015.10.008

[19]   Sarr, J.B., Orlandi-Pradines, E., Fortin, S., Sow, C., Cornelie, S., Rogerie, F. and Rogier, C. (2011) Assessment of Exposure to Plasmodium Falciparum Transmission in a Low Endemicity Area by Using Multiplex Fluorescent Microsphere-Based Serological Assays. Parasites & Vectors, 4, Article No. 212.
https://doi.org/10.1186/1756-3305-4-212

[20]   Fonseca, B.P., Marques, C.F., Nascimento, L.D., Mello, M.B., Silva, L.B., Rubim, N.M., Krieger, M.A., et al. (2011) Development of a Multiplex Bead-Based Assay for Detection of Hepatitis C Virus. Clinical and Vaccine Immunology, 18, 802-806.
https://doi.org/10.1128/CVI.00265-10

[21]   Radwanska, M., Magez, S., Michel, A., Stijlemans, B., Geuskens, M. and Pays, E. (2000) Comparative Analysis of Antibody Responses against HSP60, Invariant Surface Glycoprotein 70, and Variant Surface Glycoprotein Reveals a Complex Antigen-Specific Pattern of Immunoglobulin Isotype Switching during Infection by Trypanosoma brucei. Infection and Immunity, 68, 848-860.
https://doi.org/10.1128/IAI.68.2.848-860.2000

[22]   Goto, Y., Duthie, M.S., Kawazu, S.I., Inoue, N. and Carter, D. (2011) Biased Cellular Locations of Tandem Repeat Antigens in African Trypanosomes. Biochemical and Biophysical Research Communications, 405, 434-438.
https://doi.org/10.1016/j.bbrc.2011.01.048

[23]   Burgess, D.E. and Jerrells, T.H.O.M.A.S. (1985) Molecular Identity and Location of Invariant Antigens on Trypanosoma Brucei Rhodesiense Defined with Monoclonal Antibodies Reactive with Sera from Trypanosomiasis Patients. Infection and Immunity, 50, 893-899.

[24]   World Health Organization (2013) Control and Surveillance of African Trypanosomiasis. WHO Technical Report Series No. 984. World Health Organization, Geneva, Switzerland.

 
 
Top