Back
 AJPS  Vol.10 No.11 , November 2019
Using a Macroalgal Functional Form Approach to Assess the Level of Disturbance of Seagrass Meadows in Bahía of Nuevitas, Cuba (2000-2002)
Abstract: A study on the spatial and seasonal variations of the associate macroalgae and epiphytes of Thalassia testudinum was carried out in Bahía de Nuevitas. Sixty-two species were identified: 3 Cyanophyta, 25 Chlorophyta, 8 Phaeophyceae, 23 Rhodophyta and 3 Magnoliophyta, with two new records for Cuba and 43 for the area. The differences in the specific composition of the macroalgae communities are determined by a space component related to the type of affectation in each area. The morpho-functional groups of macroalgae in the station with more nutrient influence were mainly foliaceous and filamentous. In the stations far from the city, the predominant morpho-types were the leathery and articulate calcareous indicators of lower nitrification levels. The abundance and diversity of macroalgae in the site affected by fisheries were lower due to the damage by bottom trawls. Seasonal variations were found in the relative abundance of the species, not in the diversity, which makes evident seasonal changes in the structure of the seaweeds, where some species replace others in the community.
Cite this paper: Cabrera, R. , Díaz-Larrea, J. , Umanzor, S. and Núñez García, L. (2019) Using a Macroalgal Functional Form Approach to Assess the Level of Disturbance of Seagrass Meadows in Bahía of Nuevitas, Cuba (2000-2002). American Journal of Plant Sciences, 10, 2020-2033. doi: 10.4236/ajps.2019.1011142.
References

[1]   Duarte, C.M. and Chiscano, C.L. (1999) Seagrass Biomass and Production: A Reassessment. Aquatic Botany, 65, 159-174.
https://doi.org/10.1016/S0304-3770(99)00038-8

[2]   Hemminga, M.A. and Duarte, C.M. (2000) Seagrass Ecology. Cambridge University Press, Cambridge, 298 p.
https://doi.org/10.1017/CBO9780511525551

[3]   Zieman, J.C. (1975) Seasonal Variation of Turtle Grass, Thalassia testudinum Konig, with Reference to Temperature and Salinity Effects. Aquatic Botany, 2, 107-123.
https://doi.org/10.1016/0304-3770(75)90016-9

[4]   Zieman, J.C. (1986) Gradients in Caribbean Coastal Seagrass Ecosystems. Unesco Reports in Marine Science, 41, 25-29.

[5]   Alcolado, P.M. (1990) Ecological Aspects of the Macrolaguna of the Gulf of Batabanó, with Special Reference to the Bentos. In: Alcolado, P.M., Ed., The Bentos of the Macrolaguna of the Gulf of Batabanó, Academia, La Habana, 129-157.

[6]   Richard, K.F., Unsworth, L.J., McKenzie, C.J., Collier, L.C., Cullen-Unsworth, H., Duarte, C.M., Eklof, J.S., Jarvis, J.C., Jones, B.L. and Nordlund, L.M. (2018) Global Challenges for the Conservation of Seagrass. Ambio: A Journal of the Human Environment, 48, 801-815.
https://doi.org/10.1007/s13280-018-1115-y

[7]   Martínez-Daranas, B., Cabrera, R. and Pina, F. (2009) Spatial and Temporal Variability of Thalassia testudinum in Nuevitas Bay, Cuba. Revista Ciencias Marinas y Costeras, 1, 9-27.
https://doi.org/10.15359/revmar.1.1

[8]   Duarte, C.M., Middelburg, J.J. and Caraco, N. (2005) Major Role of Marine Vegetation on the Oceanic Carbon Cycle. Biogeosciences, 2, 1-8.
https://doi.org/10.5194/bg-2-1-2005

[9]   Fourqurean, J.W., Duarte, C.M., Kennedy, H., Marba, N., Holmer, M.A., Mateo, E.T., Apostolaki, G.A., Kendrick, D., Krause-Jensen, K.J. and McGlatheryand Serrano, O. (2012) Seagrass Ecosystems as a Globally Significant Carbon Stock. Nature Geoscience, 5, 505-509.
https://doi.org/10.1038/ngeo1477

[10]   Wood, S. (1995) Seagrass Tells Water Quality Story. Fathom, 7, 3.

[11]   Littler, M.M. and Littler, D.S. (1980) The Evolution of the Thallus and Survival Strategies in Benthic Macroalgae: Field and Laboratory Tests of a Functional Form Model. The American Naturalist, 116, 25-44.
https://doi.org/10.1086/283610

[12]   Littler, M.M., Littler, D.S. and Taylor, P.R. (1983) Evolutionary Strategies in a Tropical Barrier Reef System: Functional-Form Groups of Marine Macroalgae. Journal of Phycology, 19, 229-237.
https://doi.org/10.1111/j.0022-3646.1983.00229.x

[13]   Cormaci, M. and Furnari, G. (1999) Changes of the Benthic Algal Flora of the Tremiti Islands (Southern Adriatic) Italy. Hidrobiologia, 398/399, 75-79.
https://doi.org/10.1023/A:1017052332207

[14]   Hauxvell, J., Cebrián, J., Furlong, J. and Valiela, I. (2001) Macroalgal Canopies Contribute to Eelgrass (Zostera marina) Declinein Temperature Estuarine Ecosystems. Ecology, 82, 1007-1022.
https://doi.org/10.1890/0012-9658(2001)082[1007:MCCTEZ]2.0.CO;2

[15]   Martínez-Daranas, B., Jiménez, C. and Alcolado, P.M. (1996) Prospección del Macrofitobentos de los fondos blandos del Archipiélago Sabana—Camagüey, Cuba. Avicennia, 4/5, 77-88.

[16]   Cabrera, R., Moreira, A. and Suárez, A.M. (2004) Variación en la composición y estructura de las asociaciones algales en la Bahía de Nuevitas, costa NE de Cuba. Revista Investigaciones Marinas, 25, 133-142.

[17]   Cabrera, R., Moreira, A. and Primelles, J. (2006) Distribución de la biomasa de macroalgas en la Bahía de Nuevitas, Cuba. Revista Investigaciones Marinas, 27, 19-29.

[18]   Martínez-Daranas, B., Cano-Mallo, M., Perdomo, M.E., Clero-Alonso, L., Díaz-Larrea, J., Guimaraes, M., Zúniga-Rios, D., Alcolado, P.M., Duarte, C.M. and Siret, S. (2007) Estado de los pastos marinos. In: Alcolado, P.M., García, E.E. and Arellano-Acosta, M., Eds., Ecosistema Sabana-Camagüey: Estado actual, avances y desafíos en la protección y uso sostenible de la biodiversidad, Editorial Academia, La Habana, 51-56.

[19]   Suárez, A.M., Aguilar, C. and González-Sansón, G. (1989) Comparación de dos métodos para la cuantificación del fitobentos. Revista Investigaciones Marinas, 10, 21-26.

[20]   Margalef, R. (1982) Ecología. Ed. Omega, Barcelona, 951 p.

[21]   Boesch, D.F. (1977) Application of Numerical Classification in Ecological Investigations of Water Pollution. Virginia Institute of Marine Science, Special Scientific Report, Vol. 77, ix + 113 p.

[22]   Gonzáles-Sansón, G., Aguilar, C., Angulo, J. and Gándara, C. (1997) Spatial and Seasonal Variation of the Ichthyofauna in a Coastal Coral Reef in the Northwestern Region of Cuba. Revista Investigaciones Marinas, 18, 249-259.

[23]   Taylor, W.R. (1960) Marine Algae of the Eastern Tropical and Subtropical Coasts of the Americas. The University of Michigan Press, Ann Arbor, 870 p.

[24]   Joly, A.B. (1967) Generos de alghas marinhas do costa atlántica latino-americana. Editora da Sao Paulo, Sao Paulo, 461 p.

[25]   Cordeiro-Marino, M. (1978) Rodoficeas bentónicas marinhas do estado de Santa Catarina. Rickia, 7, 1-243.

[26]   Littler, D.S. and Littler, M.M. (1990) Systematics of Udotea (Bryopsidales, Chlorophyta) in the Tropical Western Atlantic. Phycologia, 29, 206-252.
https://doi.org/10.2216/i0031-8884-29-2-206.1

[27]   Littler, D.S. and Littler, M.M. (1997) An Illustrated Marine Flora of the Pelican Cays, Belize. Bulletin of the Biological Society of Washington, 9, 125-132.

[28]   Littler, D.S. and Littler, M.M. (2000) Caribbean Reef Plants. Offshore Graphics Inc., Washington DC, 542 p.

[29]   Zar, J.H. (1996) Biostatistical Analysis. 3rd Edition, Prentice Hall Inc., Upper Saddle River, 659 p.

[30]   Clarke, K.R. and Warwick, R.M. (1994) Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. Natural Environment Research Council, Swindon, 144 p.

[31]   Kovach, W.L. (1990) Multivariate Statiscal Package (MVSP) Shareware. 2.0 User’s Manual.

[32]   StatSoft Inc. (1995) STATISTICA for Windows (Computer Program Manual). Tulsa.

[33]   Elliot, J.M. (1977) Some Methods for the Statistical Analysis of Samples of Benthic Invertebrates. 2nd Edition, Freshwater Biological Publ. 25, Freshwater Biological Association, Ambleside, 160 p.

[34]   Kendrick, G.A. and Burt, J.S. (1997) Seasonal Changes in Epiphytic Macro-Algae Assemblages between Offshore Exposed and Inshore Protected Posidonia sinuosa Cambridge et Kuo Seagrass Meadows, Western Australia. Botanica Marina, 40, 77-85.
https://doi.org/10.1515/botm.1997.40.1-6.77

[35]   Littler, M.M. and Murray, M. (1978) Influence of Domestic Water on Energetic Pathways in Rocky Intertidal Communities. Journal Applied Ecology, 15, 583-595.
https://doi.org/10.2307/2402612

[36]   Dailé, A., Guimaraes, M. and Ortiz, R. (2013) Variación espacio-temporal de grupos morfo-funcionales de macroalgas en pastos marinos al norte de Ciego de ávila, Cuba. Revista Investigaciones Marinas, 33, 14-22.

[37]   Borowitzka, M.A. and Lethbridge, R.C. (1989) Seagrass Epiphytes. In: Larkum, A.W.D., McComb, A.J. and Shepherd, S.A., Eds., Biology of Seagrasses, Elsevier, Amsterdam, 458-485.

[38]   Lapointe, B.E., Tomasko, D.A. and Matzie, W.R. (1994) Eutrophication and Tropic State Classification of Seagrass Communities in the Florida Keys. Bulletin Marine Science, 54, 696-717.

[39]   Arévalo, R., Pinedo, S. and Ballesteros, E. (2007) Changes in the Composition and Structure of Mediterranean Rocky-Shore Communities Following a Gradient of Nutrient Enrichment: Descriptive Study and Test of Proposed Methods to Assess Water Quality Regarding Macroalgae. Marine Pollution Bulletin, 55, 104-113.
https://doi.org/10.1016/j.marpolbul.2006.08.023

[40]   Cabrera, R., Suárez, A.M., Pina, F. and Martínez-Daranas, B. (2003) Addition to the Chlorophyceas of Cuba (Bryposidales, Udoteaceae). Revista Investigaciones Marinas, 24, 71-72.

[41]   Martínez-Daranas, B. and Suárez, A.M. (2018) An Overview of Cuban Seagrasses. Bulletin of Marine Science, 94, 269-282.
https://doi.org/10.5343/bms.2017.1014

 
 
Top