Back
 AM  Vol.10 No.11 , November 2019
The Proof of the Riemann Hypothesis and an Application to Physics
Abstract: In this manuscript, a proof for the age-old Riemann hypothesis is delivered, interpreting the Riemann Zeta function as an analytical signal, and using a signal analyzing affine model used in radar technology to match the warped Riemann Zeta function on the time domain with its conjugate pair on the warped frequency domain (a Dirichlet series), through a scale invariant composite Mellin transform. As an application of above, since the Navier Stokes system solution’s Dirichlet transforms are also Dirichlet series, a minimal general solution of the 3d Navier Stokes differential equation for viscid incompressible flows is constructed through a fractional derivative Fourier transform of the found begin-solutions preserving the geometric properties of the 2d version assuming that the solution is an analytic solution that suffices the Laplace equation in cylindrical coordinates, which is the momentum equation for both the 2d and the 3d Navier Stokes systems of differential equations.
Cite this paper: Meulens, R. (2019) The Proof of the Riemann Hypothesis and an Application to Physics. Applied Mathematics, 10, 967-988. doi: 10.4236/am.2019.1011068.
References

[1]   Riemann, B. (1859) Ueber die Anzahl der Primzahlen Unter einen gegebenen Gröss. Monatsberichte der Berliner Akademie, 1-9.

[2]   Garas, J. (1999) Adaptive 3D Sound Systems. Thesis, Technische Universiteit Eindhoven, Eindhoven.
https://doi.org/10.1007/978-1-4419-8776-1

[3]   Bertrand, J., Bertrand, P. and Ovarlez, J.P. (1990) Discrete Mellin Transform for Signal Analysis. Proceedings of ICASSP, Vol. 3, 1603-1606.

[4]   Bertrand, J., Bertrand, P. and Ovarlez, J. (1989) Compression d’Impulsion en large bande. XIIieme Colloque sur le traitement du signal et des images, Paris, Vol. 12, 21-24.

[5]   Ovarlez, J.P. (1991) Calcul des Fonctions D’ámbiguie Large Bande Par Transformee de Mellin. Proceedings of XIIIeme Coll. GRESTI, Chatilon Cedex.

[6]   Ovarlez, J.P. (1994) La Transformation de Mellin Transform et L’analyse des signaux Large Bande. Coll. Temps-Frequence, Ondelettes et Multiresolution: Theorie, Modeles et Applications, Vol. 9, 1-8.

[7]   Bertrand, J. and Bertrand, P. (1969) Wavelets Time Frequency Methods and Phase-Space. Springer-Verlag, Berlin, 164-171.

[8]   Wikipedia Contributors (2006) Cauchy-Euler Equation.
https://en.wikipedia.org/wiki/Cauchy%E2%80%93Euler_equation

[9]   Powell, A. (2010) The Navier-Stokes Equations.
ftp://texmex.mit.edu/pub/emanuel/CLASS/12.340/navier-stokes(2).pdf

[10]   Poularikas, E. (1999) The Handbook of Formulas and Tables for Signal Processing. CRC Press, Boca Raton.
https://doi.org/10.1201/9781420049701

[11]   Poularikas, E. (2010) Transforms and Application Handbook. Third Edition, CRC Press, Boca Raton.
https://doi.org/10.1201/9781420066531

[12]   Wikipedia Contributors (2018) Fractional Calculus.
https://en.wikipedia.org/wiki/Fractional_calculus

[13]   OEIS A053117 (1964) The Online Encyclopedia of Integer Sequences.
https://oeis.org/A053117

[14]   Wikipedia Contributors (2017) Chebyshev Polynomials.
http://en.wikipedia.org/wiki/Chebyshev_polynomials

[15]   Melzak, Z.A. (2012) Companion to Concrete Mathematics. Dover Publications, Incorporated, Mineola.

[16]   Wikipedia Contributors (2015) Heaviside Step Function.
https://e.wikipedia.org/wiki/Heaviside_step_function

[17]   Wikipedia Contributors (2008) Euler Product.
https://en.wikipedia.org/wiki/euler_product

[18]   Srinivasan, G.K. (2012) A Unified Approach to the Integrals of Mellin-Barnes-Hecke Type.
https://arxiv.org/pdf/1208.6079.pdf

[19]   Wikipedia Contributors (2018) Confluent Hypergeometric Function.
https://en.wikipedia.org/w/index.php?title=Confluent_hypergeometric_function&oldid=865747301

[20]   Vojta, V. (2013) An Interconnection between Cayley-Eisenstein-Pólya and Landau Probability Distributions. Acta Polytechnica, 53, 63-69.

[21]   Wikipedia Contributors (2015) The Associated Laguerre Polynomials.
https://e.wikipedia.org/wiki/Lageurre_polynomials

[22]   Wikipedia Contributors (2010) Bessel Polynomials.
https://en.wikipedia.org/w/index.php?title=Bessel_polynomials&oldid=882389474

[23]   The Online Encyclopedia of Integer Sequences (1964) The Online Encyclopedia of Integer Sequences OIES A113025.
https://oeis.org/A113025

 
 
Top