[1] Fu, G., Zhang, H. R., & Sun, W. (2019). Response of Plant Production to Growing/ Non-Growing Season Asymmetric Warming in an Alpine Meadow of the Northern Tibetan Plateau. Science of The Total Environment, 650, 2666-2673.
https://doi.org/10.1016/j.scitotenv.2018.09.384
[2] Grimm, N. B., Chapin, F. S., Bierwagen, B. et al (2013). The Impacts of Climate Change on Ecosystem Structure and Function. Frontiers in Ecology and the Environment, 11, 474-482.
https://doi.org/10.1890/120282
[3] Jönsson, P., & Eklundh, L. (2004). TIMESAT—A Program for Analyzing Time-Series of Satellite Sensor Data. Computers & Geosciences, 30, 833-845.
https://doi.org/10.1016/j.cageo.2004.05.006
[4] Karnieli, A., Bayasgalan, M., Bayarjargal, Y., Agam, N., Khudulmur, S., & Tucker, C. J. (2006). Comments on the Use of the Vegetation Health Index over Mongolia. International Journal of Remote Sensing, 27, 2017-2024.
https://doi.org/10.1080/01431160500121727
[5] Kim, Y., Kimball, J. S., Zhang, K., & McDonald, K. C. (2012). Satellite Detection of Increasing Northern Hemisphere Non-Frozen Seasons from 1979 to 2008: Implications for Regional Vegetation Growth. Remote Sensing of Environment, 121, 472-487.
https://doi.org/10.1016/j.rse.2012.02.014
[6] Liang, S. H., Ge, S. M., Wan, L., & Xu, D. W. (2012). Characteristics and Causes of Vegetation Variation in the Source Regions of the Yellow River, China. International Journal of Remote Sensing, 33, 1529-1542.
https://doi.org/10.1080/01431161.2011.582187
[7] Luo, L. H., Ma, W., Zhuang, Y. L. et al. (2018). The Impacts of Climate Change and Human Activities on Alpine Vegetation and Permafrost in the Qinghai-Tibet Engineering Corridor. Ecological Indicators, 93, 24-35.
https://doi.org/10.1016/j.ecolind.2018.04.067
[8] Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., & Nemani, R. (1997). Increased Plant Growth in the Northern High Latitudes from 1981 to 1991. Nature, 386, 698-702.
https://doi.org/10.1038/386698a0
[9] Oliva, M., Pereira, P., & Antoniades, D. (2018). The Environmental Consequences of Permafrost Degradation in a Changing Climate. Science of the Total Environment, 616-617, 435-437.
https://doi.org/10.1016/j.scitotenv.2017.10.285
[10] Pan, T., Zou, X. T., Liu, Y. J., Wu, S. H., & He, G. M. (2017). Contributions of Climatic and Non-Climatic Drivers to Grassland Variations on the Tibetan Plateau. Ecological Engineering, 108, 307-317.
https://doi.org/10.1016/j.ecoleng.2017.07.039
[11] Pang, G. J., Wang, X. J., & Yang, M. X. (2017). Using the NDVI to Identify Variations in, and Responses of, Vegetation to Climate Change on the Tibetan Plateau from 1982 to 2012. Quaternary International, 444, 87-96.
https://doi.org/10.1016/j.quaint.2016.08.038
[12] Piao, S. L., Friedlingstein, P., Ciais, P., Viovy, N., & Demarty, J. (2007). Growing Season Extension and Its Impact on Terrestrial Carbon Cycle in the Northern Hemisphere over the Past 2 Decades. Global Biogeochemical Cycles, 21, GB3018.
https://doi.org/10.1029/2006GB002888
[13] Qin, Y., Lei, H. M., Yang, D. W., Gao, B., Wang, Y. H., Cong, Z. T., & Fan, W. J. (2016). Long-Term Change in the Depth of Seasonally Frozen Ground and Its Ecohydrological Impacts in the Qilian Mountains, Northeastern Tibetan Plateau. Journal of Hydrology, 542, 204-221.
https://doi.org/10.1016/j.jhydrol.2016.09.008
[14] Shen, X. J., An, R., Feng, L. et al. (2018). Vegetation Changes in the Three-River Headwaters Region of the Tibetan Plateau of China. Ecological Indicators, 93, 804-812.
https://doi.org/10.1016/j.ecolind.2018.05.065
[15] Sheng, W. P., Zhen, L., Xiao, Y., & Hu, Y. F. (2019). Ecological and Socioeconomic Effects of Ecological Restoration in China’s Three Rivers Source Region. Science of the Total Environment, 650, 2307-2313.
https://doi.org/10.1016/j.scitotenv.2018.09.265
[16] Song, C. Q., Ke, L. H., You, S. C., Liu, G. H., & Zhong, X. K. (2011). Comparison of Three NDVI Time-Series Fitting Methods Based on TIMESAT—Taking the Grassland in Northern Tibet as Case. Remote Sensing Technology & Application, 26, 147-155.
[17] Wang, B. L., & French, H. M. (1994) Climate Controls and High-Altitude Permafrost, Qinghai-Xizang (Tibet) Plateau, China. Permafrost & Periglacial Processes, 5, 87-100.
https://doi.org/10.1002/ppp.3430050203
[18] Wang, G. X., Liu, L. A., Liu, G. S., Hu, H. C., & Li, T. B. (2010). Impacts of Grassland Vegetation Cover on the Active-Layer Thermal Regime, Northeast Qinghai-Tibet Plateau, China. Permafrost & Periglacial Processes, 21, 335-344.
https://doi.org/10.1002/ppp.699
[19] Wang, R., Zhu, Q. K., Ma, H., & Ai, N. (2017). Spatial-Temporal Variations in Near-Surface Soil Freeze-Thaw Cycles in the Source Region of the Yellow River during the Period 2002-2011 Based on the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) Data. Journal of Arid Land, 9, 850-864.
https://doi.org/10.1007/s40333-017-0032-4
[20] Wang, T. Y., Wu, T. H., Wang, P., Li, R., Xie, C. W., & Zou, D. F. (2019). Spatial Distribution and Changes of Permafrost on the Qinghai-Tibet Plateau Revealed by Statistical Models during the Period of 1980 to 2010. Science of the Total Environment, 650, 661-670.
https://doi.org/10.1016/j.scitotenv.2018.08.398
[21] Wang, X. Y., Yi, S. H., Wu, Q. B., Yang, K., & Ding, Y. J. (2016). The Role of Permafrost and Soil Water in Distribution of Alpine Grassland and Its NDVI Dynamics on the Qinghai-Tibetan Plateau. Global and Planetary Change, 147, 40-53.
https://doi.org/10.1016/j.gloplacha.2016.10.014
[22] Xu, W. X., Gu, S., Zhao, X. Q., Xiao, J. S., Tang, Y. H., Fang, J. Y., Zhang, J., & Jiang, S. (2011). High Positive Correlation between Soil Temperature and NDVI from 1982 to 2006 in Alpine Meadow of the Three-River Source Region on the Qinghai-Tibetan Plateau. International Journal of Applied Earth Observations & Geoinformation, 13, 528-535.
https://doi.org/10.1016/j.jag.2011.02.001
[23] Yang, M., Nelson, F. E., Shiklomanov, N. I., Guo, D. L., & Wan, G. N. (2010). Permafrost Degradation and Its Environmental Effects on the Tibetan Plateau: A Review of Recent Research. Earth Science Reviews, 103, 31-44.
https://doi.org/10.1016/j.earscirev.2010.07.002
[24] Yi, S. H., Zhou, Z. Y., Ren, S. L., Xu, M., Qin, Y., Chen, S. Y., & Ye, B. S. (2011). Effects of Permafrost Degradation on Alpine Grassland in a Semi-Arid Basin on the Qinghai-Tibetan Plateau. Environmental Research Letters, 6, 45403-45409.
https://doi.org/10.1088/1748-9326/6/4/045403
[25] Yu, S., Xia, J. J., Yan, Z. W., & Yang, K. (2018). Changing Spring Phenology Dates in the Three-Rivers Headwater Region of the Tibetan Plateau during 1960-2013. Advances in Atmospheric Sciences, 35, 116-126.
https://doi.org/10.1007/s00376-017-6296-y
[26] Zhang, J. H., Yao, F. M., Zheng, L. Y., & Yang, L. M. (2007). Evaluation of Grassland Dynamics in the Northern-Tibet Plateau of China Using Remote Sensing and Climate Data. Sensors, 7, 3312-3328.
https://doi.org/10.3390/s7123312
[27] Zhang, W. J., Yi, Y. H., Kimball, J. S., Kim, Y. W., & Song, K. C. (2015) Climatic Controls on Spring Onset of the Tibetan Plateau Grasslands from 1982 to 2008. Remote Sensing, 7, 16607-16622.
https://doi.org/10.3390/rs71215847
[28] Zhang, Y., Zhang, C. B., Wang, Z. Q., Chen, Y. Z., Gang, C. C., An, R., & Li, J. C. (2016). Vegetation Dynamics and Its Driving Forces from Climate Change and Human Activities in the Three-River Source Region, China from 1982 to 2012. Science of the Total Environment, 563, 210-220.
https://doi.org/10.1016/j.scitotenv.2016.03.223
[29] Zhong, L., Ma, Y. M., Salama, M. S., & Su, Z. B. (2010). Assessment of Vegetation Dynamics and Their Response to Variations in Precipitation and Temperature in the Tibetan Plateau. Climatic Change, 103, 519-535.
https://doi.org/10.1007/s10584-009-9787-8
[30] Zhou, Z. Y., Yi, S. H., Chen, J. J., Ye, B. S., Sheng, Y., Wang, G. X., & Ding, Y. J. (2015). Responses of Alpine Grassland to Climate Warming and Permafrost Thawing in Two Basins with Different Precipitation Regimes on the Qinghai-Tibetan Plateaus. Arctic Antarctic & Alpine Research, 47, 125-131.
https://doi.org/10.1657/AAAR0013-098