Back
 JAMP  Vol.7 No.11 , November 2019
The Interaction and Degeneracy of Mixed Solutions for Derivative Nonlinear Schrödinger Equation
Abstract: The mixed solutions of the derivative nonlinear Schrödinger equation from the trivial seed (zero solution) are derived by using the determinant representation. By adjusting the interaction and degeneracy of mixed solutions, it is possible to obtain different types of solutions: phase solutions, breather solutions, phase-breather solutions and rogue waves.
Cite this paper: Wu, Z. , Xu, S. , Wu, T. and Zhou, H. (2019) The Interaction and Degeneracy of Mixed Solutions for Derivative Nonlinear Schrödinger Equation. Journal of Applied Mathematics and Physics, 7, 2650-2657. doi: 10.4236/jamp.2019.711180.
References

[1]   Mjølhus, E. (1976) On the Modulational Instability of Hydromagnetic Waves Parallel to the Magnetic Field. Journal of Plasma Physics, 16, 321-334.
https://doi.org/10.1017/S0022377800020249

[2]   Spangler, S.P. (1997) Nonlinear Waves and Chaos in Space Plasmas. Terrapub, Tokyo, 171.

[3]   Ruderman, M.S. (2002) DNLS Equation for Large-Amplitude Solitons Propagating in an Arbitrary Direction in a High-β Hall Plasma. Journal of Plasma Physics, 67, 271-276.
https://doi.org/10.1017/S002237780200168X

[4]   Fedun, V., Ruderman, M.S. and Erdélyi, R. (2008) Generation of Short-Lived Large-Amplitude Magnetohydrodynamic Pulses by Dispersive Focusing. Physics Letters A, 372, 6107-6110.
https://doi.org/10.1016/j.physleta.2008.08.025

[5]   Tzoar, N. and Jain, M. (1981) Self-Phase Modulation in Long-Geometry Optical Waveguide. Physical Review A, 23, 1266-1270.
https://doi.org/10.1103/PhysRevA.23.1266

[6]   Anderson, D. and Lisak, M. (1983) Nonlinear Asymmetric Self-Phase Modulation and Self-Steepening of Pulses in Long Optical Waveguides. Physical Review A, 27, 1393-1398.
https://doi.org/10.1103/PhysRevA.27.1393

[7]   Agrawal, G.P. (2001) Nonlinear Fibers Optics. 3rd Edition, Academic, New York.

[8]   Kaup, D.J. and Newell, A.C. (1978) An Exact Solution for a Derivative Nonlinear Schrödinger Equation. Journal of Mathematical Physics, 19, 798-801.
https://doi.org/10.1063/1.523737

[9]   Huang, N.N. and Chen, Z.Y. (1990) Alfven Solitons. Journal of Physics A: Mathematical and General, 23, 439-453.
https://doi.org/10.1088/0305-4470/23/4/014

[10]   Kawata, T. and Inoue, H. (1978) Exact Solutions of the Derivative Nonlinear Schrödinger Equation under the Nonvanishing Conditions. Journal of the Physical Society of Japan, 44, 1968-1976.
https://doi.org/10.1143/JPSJ.44.1968

[11]   Chen, X.J. and Lam, W.K. (2004) Inverse Scattering Transform for the Derivative Nonlinear Schrödinger Equation with Nonvanishing Boundary Conditions. Physical Review E, 69, Article ID: 066604.
https://doi.org/10.1103/PhysRevE.69.066604

[12]   Xu, S.W., He, J.S. and Wang, L.H. (2011) The Darboux Transformation of the Derivative Nonlinear Schrödinger Equation. Journal of Physics A: Mathematical and Theoretical, 44, Article ID: 305203.
https://doi.org/10.1088/1751-8113/44/30/305203

[13]   Guo, B.L., Ling, L.M. and Liu, Q.P. (2012) High-Order Solutions and Generalized Darboux Transformations of Derivative Nonlinear Schrödinger Equations. Studies in Applied Mathematics, 130, 317-344.
https://doi.org/10.1111/j.1467-9590.2012.00568.x

[14]   Xu, S.W., Wang, L.H., Erdlyi, R. and He, J.S. (2019) Degeneracy in Bright-Dark Solitons of the Derivative Nonlinear Schrödinger Equation. Applied Mathematics Letters, 87, 64-72.
https://doi.org/10.1016/j.aml.2018.07.021

[15]   Xu, S.W., He, J.S. and Mihalache, D. (2019) Rogue Waves Generation through Multiphase Solutions Degeneration for the Derivative Nonlinear Schrödinger Equation. Nonlinear Dynamics, 97, 2443-2452.
https://doi.org/10.1007/s11071-019-05140-0

[16]   Imai, K. (1999) Generalization of Kaup-Newell Inverse Scattering Formulation and Darboux Transformation. Journal of the Physical Society of Japan, 68, 355-359.
https://doi.org/10.1143/JPSJ.68.355

[17]   Steudel, H. (2003) The Hierarchy of Multi-Soliton Solutions of the Derivative Nonlinear Schrödinger Equation. Journal of Physics A: Mathematical and General, 36, 1931-1946.
https://doi.org/10.1088/0305-4470/36/7/309

[18]   Neugebauer, G. and Meinel, R. (1984) General N-Soliton Solution of the AKNS Class on Arbitrary Background. Physics Letters A, 100, 467-470.
https://doi.org/10.1016/0375-9601(84)90827-2

[19]   Matveev, V.B. and Salle, M.A. (1991) Darboux Transfromations and Solitons. Springer, Berlin.
https://doi.org/10.1007/978-3-662-00922-2

[20]   Ablowitz, M.J., Kaup, D.J., Newell, A.C. and Segur, H. (1973) Nonlinear Evolution Equations of Physical Significance. Physical Review Letters, 31, 125-127.
https://doi.org/10.1103/PhysRevLett.31.125

[21]   Ablowitz, M.J. and Clarkson, P.A. (1991) Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511623998

[22]   Solli, D.R., Ropers, C., Koonath, P. and Jalali, B. (2007) Optical Rogue Waves. Nature, 450, 1054-1057.
https://doi.org/10.1038/nature06402

[23]   Kibler, B., Fatome, J., Finot, C., Millot, G., Dias, F., Genty, G., Akhmediev, N. and Dudley, J.M. (2010) The Peregrine Soliton in Nonlinear Fibre Optics. Nature Physics, 6, 790-795.
https://doi.org/10.1038/nphys1740

[24]   Chabchoub, A., Hoffmann, N.P. and Akhmediev, N. (2011) Rogue Wave Observation in a Water Wave Tank. Physical Review Letters, 106, Article ID: 204502.
https://doi.org/10.1103/PhysRevLett.106.204502

[25]   Chabchoub, A., Hoffmann, N., Onorato, M. and Akhmediev, N. (2012) Super Rogue Waves: Observation of a Higher-Order Breather in Water Waves. Physical Review X, 2, Article ID: 011015.
https://doi.org/10.1103/PhysRevX.2.011015

[26]   Kharif, C., Pelinovsky, E. and Slunyaev, A. (2009) Rogue Waves in the Ocean. Springer, Berlin.

[27]   Onorato, M., Residori, S., Bortolozzo, U., Montina, A. and Arecchi, F.T. (2013) Rogue Waves and Their Generating Mechanisms in Different Physical Contexts. Physics Reports, 528, 47-89.
https://doi.org/10.1016/j.physrep.2013.03.001

[28]   Akhmediev, N., Dydley, J.M., Solli, D.R. and Turitsyn, S.K. (2013) Recent Progress in Investigating Optical Rogue Waves. Journal of Optics, 15, Article ID: 060201.
https://doi.org/10.1088/2040-8978/15/6/060201

[29]   Dudley, J.M., Dias, F., Erkintalo, M. and Genty, G. (2014) Instabilities, Breathers and Rogue Waves in Optics. Nature Photonics, 8, 755-764.
https://doi.org/10.1038/nphoton.2014.220

[30]   Chen, S., Baronio, F., Soto-Crespo, J.M., Grelu, P. and Mihalache, D. (2017) Versatile Rogue Waves in Scalar, Vector, and Multidimensional Nonlinear Systems. Journal of Physics A: Mathematical and Theoretical, 50, Article ID: 463001.
https://doi.org/10.1088/1751-8121/aa8f00

[31]   Mihalache, D. (2017) Multidimensional Localized Structures in Optical and Matter-Wave Media: A Topical Survey of Recent Literature. Romanian Reports in Physics, 69, 403.

[32]   Peregrine, D.H. (1983) Water Waves, Nonlinear Schrödinger Equations and Their Solutions. The Journal of the Australian Mathematical Society. Series B, Applied Mathematics, 25, 16-43.
https://doi.org/10.1017/S0334270000003891

[33]   Akhmediev, N., Ankiewicz, A. and Taki, M. (2009) Waves That Appear from Nowhere and Disappear without a Trace. Physics Letters A, 373, 675-678.
https://doi.org/10.1016/j.physleta.2008.12.036

[34]   Kuznetsov, E.A. (1977) Solitons in a Parametrically Unstable Plasma. Soviet Physics—Doklady, 22, 507-508.

[35]   Ma, Y.C. (1979) The Perturbed Plane-Wave Solutions of the Cubic Schrödinger Equation. Studies in Applied Mathematics, 60, 43-58.
https://doi.org/10.1002/sapm197960143

[36]   Akhmediev, N.N. and Korneev, V.I. (1987) Modulation Instability and Periodic Solutions of Nonlinear Schrödinger Equation. Theoretical and Mathematical Physics, 69, 1089-1093.
https://doi.org/10.1007/BF01037866

[37]   Bertola, M., El, G.A. and Tovbis, A. (2016) Rogue Waves in Multiphase Solutions of the Focusing Nonlinear Schrödinger Equation. Proceedings of the Royal Society A, 472, Article ID: 20160340.
https://doi.org/10.1098/rspa.2016.0340

[38]   Slunyaev, A.V. and Pelinovsky, E.N. (2016) Role of Multiple Soliton Interactions in the Generation of Rogue Waves: The Modified Korteweg-de Vries Framework. Physical Review Letters, 117, Article ID: 214501.
https://doi.org/10.1103/PhysRevLett.117.214501

[39]   Wang, L.H., He, J.S., Xu, H., Wang, J. and Porsezian, K. (2017) Generation of Higher-Order Rogue Waves from Multi-Breathers by Double Degeneracy in an Optical Fiber. Physical Review E, 95, Article ID: 042217.
https://doi.org/10.1103/PhysRevE.95.042217

 
 
Top