Back
 JAMP  Vol.7 No.11 , November 2019
Algorithms for Common Solutions to Generalized Mixed Equilibrium Problems and Fixed Point Problems under Nonlinear Transformations in Banach Spaces
Abstract: The purpose of this paper is to present a new iterative scheme for finding a common solution of the generalized mixed equilibrium problems with an infinite family of inverse strongly monotone mappings and the fixed point problems of demimetric mappings under nonlinear transformations in Banach spaces. Applications are also included. The results in this paper are the extension and improvement of the recent results in the literature.
Cite this paper: Song, Y. and Chen, X. (2019) Algorithms for Common Solutions to Generalized Mixed Equilibrium Problems and Fixed Point Problems under Nonlinear Transformations in Banach Spaces. Journal of Applied Mathematics and Physics, 7, 2632-2649. doi: 10.4236/jamp.2019.711179.
References

[1]   Peng, J.W. and Yao, J.C. (2008) A New Hybrid-Extragradient Method for Generalized Mixed Equilibrium Problems, Fixed Point Problems and Variational Inequality Problems. Taiwanese Journal of Mathematics, 12, 1401-1432.
https://doi.org/10.11650/twjm/1500405033
https://projecteuclid.org/euclid.twjm/1500405033

[2]   Ceng, L.C. and Yao, J.C. (2008) A Hybrid Iterative Scheme for Mixed Equilibrium Problems and Fixed Point Problems. Journal of Computational and Applied Mathematics, 214, 186-201.
https://doi.org/10.1016/j.cam.2007.02.022
https://linkinghub.elsevier.com/retrieve/pii/S0377042707001069

[3]   Nikaido, H. and Isoda, K. (1955) Note on Non-Cooperative Convex Game. Pacific Journal of Mathematics, 5, 807-815.
https://doi.org/10.2140/pjm.1955.5.807
https://projecteuclid.org/euclid.pjm/1171984836

[4]   Cholamjiak, W., Cholamjiak, P. and Suantai, S. (2015) Convergence of Iterative Schemes for Solving Fixed Point Problems for Multi-Valued Nonself Mappings and Equilibrium Problems. Journal of Nonlinear Sciences and Applications, 8, 1245-1256.
https://mathscinet.ams.org/mathscinet-getitem?mr=3389563

[5]   Qin, X., Cho, Y.J. and Kang, S.M. (2010) Strong Convergence of Shrinking Projection Methods for Quasi-Nonexpansive Mappings and Equilibrium Problems. Journal of Computational and Applied Mathematics, 234, 750-760.
https://mathscinet.ams.org/mathscinet-getitem?mr=2606662

[6]   Moudafi, A. and Thera, M. (1999) Proximal and Dynamical Approaches to Equilibrium Problems. Lecture Notes in Economics and Mathematics Systems, 477, 187-201.
https://doi.org/10.1007/978-3-642-45780-7_12
https://mathscinet.ams.org/mathscinet-getitem?mr=1737320

[7]   Blum, E. and Oettli, W. (1994) From Optimization and Variational Inequalities to Equilibrium Problems. MathStudio, 63, 123-145.
https://mathscinet.ams.org/mathscinet-getitem?mr=1292380

[8]   Dafermos, S. and Nagurney, A. (1984) A Network Formulation of Market Equilibrium Problems and Variational Inequalities. Operations Research Letters, 3, 247-250.
https://doi.org/10.1016/0167-6377(84)90055-5
https://mathscinet.ams.org/mathscinet-getitem?mr=777640

[9]   Yao, Y.H., Zhou, H.Y. and Liou, Y.C. (2009) Weak and Strong Convergence Theorems for an Asymptotically K-Strict Pseudo-Contraction and a Mixed Equilibrium Problem. Journal of the Korean Mathematical Society, 46, 561-576.
https://doi.org/10.4134/JKMS.2009.46.3.561
https://mathscinet.ams.org/mathscinet-getitem?mr=2515136

[10]   Stampacchia, G. (1964) Formes bilinéaires coercitives sur les ensembles convexes. Comptes Rendus Mathematique Academie des Sciences, Paris, 258, 4413-4416.
https://mathscinet.ams.org/mathscinet-getitem?mr=166591

[11]   Yao, Y.H., Postolache, M., Liou, Y.C. and Yao, Z.S. (2016) Construction Algorithms for a Class of Monotone Variational Inequalities. Optimization Letters, 10, 1519-1528.
https://doi.org/10.1007/s11590-015-0954-8
https://mathscinet.ams.org/mathscinet-getitem?mr=3544127

[12]   Takahashi, W. (2017) Strong Convergence Theorem for a Finite Family of Demimetric Mappings with Variational Inequality Problems in a Hilbert Space. Japan Journal of Industrial and Applied Mathematics, 34, 41-57.
https://doi.org/10.1007/s13160-017-0237-0
https://mathscinet.ams.org/mathscinet-getitem?mr=3625838

[13]   Cho, Y.J., Qin, X. and Kang, S.M. (2009) Convergence Theorems Based on Hybrid Methods for Generalized Equilibrium Problems and Fixed Point Problems. Nonlinear Analysis, 71, 4203-4214.
https://linkinghub.elsevier.com/retrieve/pii/S0362546X09003915

[14]   Akashi, S. and Takahashi, W. (2016) Weak Convergence Theorem for an Infinite Family of Demimetric Mappings in a Hilbert Space. Journal of Nonlinear and Variational Analysis, 10, 2159-2169.
https://mathscinet.ams.org/mathscinet-getitem?mr=3583324

[15]   Takahashi, W. (2017) Weak and Strong Convergence Theorem for Families of Nonlinear and Nonself Mappings in Hilbert Spaces. Journal of Nonlinear and Variational Analysis, 1, 1-23.
http://jnva.biemdas.com/issues/JNVA2017-1-1.pdf

[16]   Marino, G. and Xu, H.K. (2007) Weak and Strong Convergence Theorems for Strict Pseudo-Contractions in Hilbert Spaces. Journal of Mathematical Analysis and Applications, 329, 336-349.
https://doi.org/10.1016/j.jmaa.2006.06.055
https://mathscinet.ams.org/mathscinet-getitem?mr=2306805

[17]   Matsushita, S. and Kuroiwa, D. (2003) Approximation of Fixed Points of Nonexpansive Nonself-Mappings. Japanese Journal of Mathematics, 57, 171-176.
https://mathscinet.ams.org/mathscinet-getitem?mr=1156581

[18]   Qin, X.L., Dehaishb, B., Latif, A. and Cho, S.Y. (2016) Strong Convergence Analysis of a Monotone Projection Algorithm in a Banach Space. Journal of Nonlinear Sciences and Applications, 9, 2865-2874.
https://mathscinet.ams.org/mathscinet-getitem?mr=3491153

[19]   Mainge, P.E. (2007) Approximation Methods for Common Fixed Points of Nonexpansive Mappings in Hilbert Spaces. Journal of Mathematical Analysis and Applications, 325, 469-479.
https://doi.org/10.1016/j.jmaa.2005.12.066
https://mathscinet.ams.org/leavingmsn?url=https://doi.org/10.1016/j.jmaa.2005.12.066

[20]   Takahashi, S. and Takahashi, W. (2008) Strong Convergence Theorem for a Generalized Equilibrium Problem and a Nonexpansive Mapping in a Hilbert Space. Nonlinear Analysis, 69, 1025-1033.
https://doi.org/10.1016/j.na.2008.02.042
https://linkinghub.elsevier.com/retrieve/pii/S0362546X08001107

[21]   Takahashi, W. (2016) The Split Common Null Point Problem and the Shrinking Projection Method in Banach Spaces. Optimization, 65, 281-287.
https://doi.org/10.1080/02331934.2015.1020943

[22]   Chidume, C. and Maruster, S. (2010) Iterative Methods for the Computation of Fixed Points of Demicontractive Mappings. Journal of Computational and Applied Mathematics, 234, 861-882.
https://doi.org/10.1016/j.cam.2010.01.050
https://www.sciencedirect.com/science/article/pii/S0377042710000634

[23]   Alizadeh, S. and Moradlou, F. (2016) A Strong Convergence Theorem for Equilibrium Problems and Generalized Hybrid Mappings. Mediterranean Journal of Mathematics, 13, 379-390.
https://doi.org/10.1007/s00009-014-0462-6
https://mathscinet.ams.org/mathscinet-getitem?mr=3456928

[24]   Eslamian, M., Eskandani, G.Z. and Raeisi, M. (2017) Split Common Null Point and Common Fixed Point Problems between Banach Spaces and Hilbert Spaces. Mediterranean Journal of Mathematics, 14, 119.
https://doi.org/10.1007/s00009-017-0922-x
https://mathscinet.ams.org/mathscinet-getitem?mr=3635959

[25]   Takahashi, S., Takahashi, W. and Toyoda, M. (2010) Strong Convergence Theorems for Maximal Monotone Operators with Nonlinear Mappings in Hilbert Spaces. Journal of Optimization Theory and Applications, 147, 27-41.
https://doi.org/10.1007/s10957-010-9713-2
https://mathscinet.ams.org/mathscinet-getitem?mr=2720590

[26]   Takahashi, W. (2000) Convex Analysis and Approximation of Fixed Points, Yokohama Publishers, Yokohama.
https://mathscinet.ams.org/mathscinet-getitem?mr=1875068

[27]   Aoyama, K. and Kohsaka, F. (2014) Viscosity Approximation Process for a Sequence of Quasinonexpansive Mappings. Fixed Point Theory and Applications, 2014, 17.
https://doi.org/10.1186/1687-1812-2014-17
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/1687-1812-2014-17

[28]   Xu, H.K. (2002) Iterative Algorithms for Nonlinear Operators. Journal of the London Mathematical Society, 66, 240-256.
https://doi.org/10.1112/S0024610702003332
https://academic.oup.com/jlms/article/66/1/240/815281

[29]   Takahashi, W., Xu, H.K. and Yao, J.C. (2015) Iterative Methods for Generalized Split Feasibility Problems in Hilbert Spaces. Set-Valued and Variational Analysis, 23, 205-221.
https://doi.org/10.1007/s11228-014-0285-4
https://sci-hub.tw/10.1007/s11228-014-0285-4

 
 
Top