[1] Marcel de Jeu, J.R. (2017) Disintegration of Positive Isometric Group Reresentations on Lp-Space. Positivity, 21, 673-710.
https://doi.org/10.1007/s11117-017-0499-4
[2] de Jeu, M. and Messerschmidt, M. (2013) Crossed Products of Banach Algebras. III. Functional Analysis.
https://arxiv.org/abs/1306.6290
[3] de Jeu, M. and Ruoff, F. (2016) Positive Representations of Co(X), I. Annals of Functional Analysis, 7, 180-205.
https://doi.org/10.1215/20088752-3462285
[4] Wickstead, A.W. (2015) Banach Lattice Algebras: Some Questions. Positivity, 21, 803-815.
https://doi.org/10.1007/s11117-015-0387-8
[5] Wickstead, A.W. (2017) Two Dimensional Unital Riesz Algebras, Their Representations and Norms. Positivity, 21, 787-801.
[6] Zaanen, A.C. (1997) Introduction to Operator Theory in Riesz Spaces. Springer, Berlin.
https://doi.org/10.1007/978-3-642-60637-3
[7] de Jeu, M. and Wortel, M. (2012) Positive Representations of Finite Groups in Riesz Spaces. International Journal of Mathematics, 23, Article ID: 1250076.
https://doi.org/10.1142/S0129167X12500760
[8] de Jeu, M. and Wortel, M. (2014) Compact Groups of Positive Operators on Banach Lattices. Indagationes Mathematicae, 25, 186-205.
https://doi.org/10.1016/j.indag.2012.05.003
[9] Eisner, T., Farkas, B., Haase and Nagel, R. (2015) Operator Theoretic Aspects of Ergodictheory. In: Graduate Texts in Mathematics, Springer, Berlin.
https://doi.org/10.1007/978-3-319-16898-2
[10] Kechris, A.S. (1995) Classical Descriptive Set Theory. In: Graduate Texts in Mathematics, Springer, Berlin.
https://doi.org/10.1007/978-1-4612-4190-4
[11] Becker, H. and Kechris, A.S. (1996) The Descriptive Set Theory of Polish Group Actions. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511735264
[12] Bogachev, V.I. (2007) Measure Theory. Springer, Berlin.
https://doi.org/10.1007/978-3-540-34514-5
[13] Haydon, R., Levy, M. and Raynaud, Y. (1991) Randomly Normed Spaces. In: Travauxen Cours (Works in Progress), Volume 41, Springer, Berlin, Hermann.
[14] Folland, G.B. (1995) A Course in Abstract Harmonic Analysis. In: Studies in Advanced Mathematics, CRC Press, Boca Raton, FL.
[15] Aliprantis, C.D. and Burkinshaw, O. (1998) Principles of Real Analysis. Academic Press, Inc., London.
[16] Nevo, A. (2006) Pointwise Ergodic Theorems for Actions of Groups. In: Hasselblatt, B. and Katok, A., Eds., Handbook of Dynamical Systems, Elsevier B.V., New York, 871-982.
https://doi.org/10.1016/S1874-575X(06)80038-X
[17] Ryan, R.A. (2002) Introduction to Tensor Products of Banach Spaces. In: Springer Monographs in Mathematics, Springer, London.
https://doi.org/10.1007/978-1-4471-3903-4
[18] Cohn, D.L. (1993) Measure Theory. Birkhauser, Boston, MA.
[19] Zakrzewski, P. (2002) Measures on Algebraic-Topological Structures. In: Pap, E., Ed., Handbook of Measure theory, Volume I, II, Elsevier, New York, 1091-1130.
https://doi.org/10.1016/B978-044450263-6/50028-2
[20] Fleming, R.J. and Jamison, J.E. (2003) Isometries on Banach Spaces: Function Spaces. In: Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Volume 129, Chapman & Hall/CRC, Boca Raton, FL.
[21] Joseph, S., Mukhtar, I. and Juma, M. (2018) The Series of Semigroup Theory via Functional Calculus. American Research Journal of Mathematics, 4, 1-17.
https://doi.org/10.21694/2378-704X.18001