GEP  Vol.7 No.10 , October 2019
Morpho-Structural Mapping Constraints from Geophysical and Test Pit Investigations: Case Study of the Bomkoul Locality in Douala Sedimentary Basin, Cameroon, Central Africa
Abstract: A survey using the electrical resistivity and test pit methods is carried out in the Douala subbasin in order to investigate the sub-surface layering and evaluate the thickness of each layer through the variation of the resistivity with the depth. Applying the Schumberger array, a total of 48 vertical electrical sounding is conducted along 8 profiles directed W-E and using traditional method, 25 test pits with depth between 15 and 19 meters are done. Qualitative interpretation is carried out through the resistivity and test pit maps. The test pit maps reveal the presence of the following layers: The first layer of thickness varies from 0.2 to 2.0 m (average of 1.9 m). The thickness of the second layer varies between 0.2 and 4.0 m with an average of 2.8 m. The thickness of the third layer is between 2.0 and 4.0 m with an average of 3.8 m. That of the fourth and fifth layers ranges respectively between 4.0 and 6.0 m (average of 5.4 m) and between 2.0 and 6.0 m with an average of 4.4 m. Isoresistivities maps from resistivities computed for different AB/2 values (1.5; 4.4; 13.5; 19; 27.5; 58 m) are generally characterized by the apparent resistivities which define many domains in function of the AB/2 values. The superficial layer is characterized by electric resistivity values ranging from 720 to 2073 Ωm for AB/2 = 1.5 m and probably represents pedologic materials. For other values of AB/2, resistivity varies from 253 to 32,381 Ωm (AB/2 = 4.4 m), 0.1 to 1838 (AB/2 = 13.2 m) with an average of 341 Ωm, 0.3 to 1608 Ωm (AB/2 = 19 m) with an average of 279 Ωm, 6.4 to 1427 Ωm (AB/2 = 27.5 m) with an average 291 Ωm, and 19.7 to 3555 Ωm (AB/2 = 58 m) with an average of 850 Ωm. These different values of resistivity represent the sedimentary materials.
Cite this paper: Mbog, M. , Kenfack, J. , Ngon, G. , Tassongwa, B. , Bayiga, E. and Etame, J. (2019) Morpho-Structural Mapping Constraints from Geophysical and Test Pit Investigations: Case Study of the Bomkoul Locality in Douala Sedimentary Basin, Cameroon, Central Africa. Journal of Geoscience and Environment Protection, 7, 136-153. doi: 10.4236/gep.2019.710011.

[1]   Banton, O., & Bangoy, L. M. (1997). Hydrogéologie multiscience environnementale des eau souterraines (p. 460).

[2]   Brownfield, M. E., & Charpentier, R. R. (2006). Geology and Total Petroleum Systems of the West-Central Coastal Province (7203), West Africa. US Geological Survey Bulletin, 2207-B, 52 p.

[3]   Danielsen, F., Mendoza, M. M., Tagtag, A., Alviola, P. A., Balete, D. S., Jensen, A. E., Enghoff, M., & Poulsen, M. K. (2017). Increasing Conservation Management Action by Involving Local People in Natural Resource Monitoring. Ambio, 36, 566-570.[566:ICMABI]2.0.CO;2

[4]   Dartevelle, E., & Brebion, P. (1956). Mollusques fossiles du Crétacé de la Côte occidentale d’Afrique du Cameroun a l’Angola. Ann. Musée Royal Congo Belge, Science Geologiques. Tervuren I-Gastéropodes, 8, 1-128.

[5]   Dartevelle, E., Freinex, S., & Sornay, J. (1957). Mollusques fossiles du Crétacé de la Côte occidentale d’Afrique du Cameroun a l’Angola. Ann. Musée Royal Congo Belge, Science Geologiques. Tervuren II-Lamellibranches, 8, 1-271.

[6]   Dumort, J. F. (1968). Identification par la télédétection de la Sanaga (Cameroun). Géodynamique, 1, 13-19.

[7]   Elimbi, A., & Njopwouo, D. (2002). Propriétés des produits de cuisson de deux argiles kaolinitiques de l’Ouest du Cameroun. Silicates Industriels, 66, 121-125.

[8]   Frohlich, R. K., Fisher, J. J., & Summerly, E. (1996). Electric Hydraulic Conductivity Correlation in Fractured Crystalline Bedrock: Central Land-Fill, Rhode Island, USA. Journal of Applied Geophysics, 35, 249-259.

[9]   Keleko, A. T. D., Tadjou, J. M., Kamguia, J., Tabod, C. T., Feumoe, S. A. N., & Kenfack, J. V. (2013). Groundwater Investigation Using Geoelectrical Method: A Case Study of the Western Region of Cameroon. Journal of Water Resource and Protection, 5, 633-641.

[10]   Maliengoue, M. A. M. (2010). Cartographie des affleurements de la localite de Bomkoul (sous-bassin de Douala) (24 p.). Douala: Memoire, DEA, Facultedes Sciences, Universite de Doula.

[11]   Mbog, M. B. (2010). Etude morphologique, physico-chimique et minéralogique des argiles de Bomkoul dans le sous bassin sédimentaire de Douala-Cameroun (60 p.). Douala: Faculté des Sciences, Université de Douala, Mémoire. D.E.A.

[12]   Mbog, M. B. (2016). Caractérisations Géophysique, Physico-chimique, Minéralogiqueet Géochimique des argiles de Bomkoul et de Ngoma dans le sous bassin de douala (171 p.). Douala: Cameroun Thèse, Faculté des Sciences, Université de Douala.

[13]   Mbog, M. B., Ngon Ngon, G. F., Etame, J., Djieto, L. A., Tassongwa, B., & Bilong, P. (2016). Vertical Electrical Sounding VES. Investigation of Aquifer and Potential Clay Materials in Douala Subbasin (Cameroon, Central Africa). Earth Science Research, 5, 1-14.

[14]   Miall, A. D. (1996). The Geology of Fluvial Deposits: Sedimentary Faciès, Basin Analysis, and Petroleum Geology (582 p.). Berlin: Springer-Verlag.

[15]   Ngon Ngon, G. F., Etame, J., Ntamak, M. J., Mbog, M. B., & Maliengoue, A. M. (2012). Geological Study of Sedimentary Clayey Materials of the Bomkoul Area in the Douala Region (Douala Sub-Basin, Cameroon) for the Ceramic Industry. Comptes Rendus Geoscience, 344, 366-376.

[16]   Nguene, F. R., Tamfu, S., Loule, J. P., & Ngassa, C. (1992). Paleoenvironment of the Douala and Kribi/Campo Subasins in Cameroon, West Africa. Géologie Africain; Coll Géol. Libreville, recueil des communic 6-8 May 1991.

[17]   Njike Ngaha, P. R. (1984). Contribution à étude géologique, stratigraphie et structurale de la bordure du bassin atlantique du Cameroun (131 p.). Thèse 3e cycle, Yaoundé: Université de Yaoundé.

[18]   Njopwouo, D. (1984). Minéralogie et physico-chimie des argiles de Bomkoul et Balengou (Cameroun). Utilisation dans la polymérisation du styrène et dans le renforcement du caouthouc naturel (300 p.). Thèse. Doct. d’Etat, Yaoundé: Univ. Yaoundé.

[19]   Njopwouo, D., & Kong, S. (1986). Minéralogie de la fraction fine des matériaux argileux de Bomkoul et de Balengou (Cameroun). Annales Faculté des Sciences, Série Science-Chimie I, 1-2, 17-31.

[20]   Njopwouo, D., & Wandji, R. (1985). Minéralogie de l’argile kaolinique de Bomkoul (Cameroun). Revue Science Technologie, Série Science I, 3-4, 71-81.

[21]   Odunaike, R. K., Fasunwon, O. O., Akinyemi, L. P., & Odusote, O. O. (2013). Physico-Chemical Characterization of Oil Sands at Imeri in Ogun State of South West, Nigeria.

[22]   Postma, G. (1990). Depositional Architecture and Facies of River and Fan Deltas: A Synthesis. In A. Colella, & D. B. Prior (Eds.), Coarse-Grained Deltas 10 (pp. 13-28). Hoboken, NJ: Wiley.

[23]   Regnoult, J. M. (1986). Synthèse géologique du Cameroun D.M.G. Yaoundé, Cameroun (118 p.).

[24]   Reyre, D. (1966). Histoire géologique du bassin de Douala. In D. Reyre (Ed.), Symposium sur les bassins sédimentaires du littoral africain (pp. 143-161). Association du Service Géologique d’Afrique, IUGS.

[25]   Riedel, L. (1932). Die Oberkreide von Mungofluss in Kamerun und ihre Fauna (pp. 1-154). Beitrage zur Geologie Erforsch. dt. Schutzeb. Berlin 16.

[26]   SNH/UD (2005). Stratigraphie séquentielle et tectonique des dépôts mésozoïques syn-rifts du bassin de Kribi/Campo (134 p.). Rapport non publié.

[27]   Solger, F. (1904). Die Fossilien der Mungokreide im Kamerun und ihre geologische Bedentung, mit besonderer Berûcksichtingung der Ammonitiden. In E. Esch, F. Solger, M. Oppenheim, & O. Jakel (Eds.), Beitrage zur Geologie Von Kamerun (Vol. 1, pp. 83-242).

[28]   Von Koenen, A. (1896). Ueber Fossilien der unteren Kreide am Ufer des Mungo im Kamerun (pp. 1-48). Abhandlungen der kôniglichen Gesellschaft der Wissenschaften zu Gottingen, Neue Folge Band 1 Nr 1.

[29]   Zohdy, A. A., Eaton, C. P., & Mabey, D. R. (1974). Application of Surface Geophysics to Groundwater Investigation. Washington DC: Tech. Water Resources Investigation, U.S. Geological Survey No. 2401.