Back
 JAMP  Vol.7 No.10 , October 2019
Modelling of the Abundance of Malaria Mosquitoes Using Poisson Mixed Model
Abstract: Anopheles funestus and Anopheles gambiae are malaria vector mosquitoes. Knowing their resting behavior is important for implementing control methods. The aim of this study was to investigate the resting behaviour of the two malaria mosquitoes. The study was conducted in Kilombero River Valley and mosquitoes were collected using indoor and outdoor traps from 2012-2015. Poisson mixed models were used to quantify the impact of environment variables on resting behaviour. A log ratio rate between the type of trap and its interaction with environmental variables was used to determine if there was a change over time in the resting behaviour. A total of 4696 mosquitoes were resting indoors of which 57% were A. funestus and 43% were A. gambiae. Similarly, a total of 12,028 mosquitoes were resting outdoor of which 13% were A. funestus and 87% were A. gambiae. Temperature was significant and affected the resting behaviour of A. funestus. Humidity, saturation deficit and temperature were significant variables influencing the resting behaviour of A. gambiae. A. funestus was resting indoor while A. gambiae was resting outdoor over time generally. The findings of this study on the effects of environmental variables and the variations in the resting behaviour of A. gambiae and A. funestus could be used as a guide to implementing appropriate intervention measures such as indoor residential spraying (IRS), insecticide treated nets (ITNs) and mosquito repellents.
Cite this paper: Moyo, E. , Munachoonga, C. , Lubumbe, D. , Banda, A. , Ngunyi, A. and Jere, S. (2019) Modelling of the Abundance of Malaria Mosquitoes Using Poisson Mixed Model. Journal of Applied Mathematics and Physics, 7, 2492-2507. doi: 10.4236/jamp.2019.710169.
References

[1]   Beck-Johnson, L.M., Nelson, W.A., Paaijmans, K.P., Read, A.F., Thomas, M.B. and Bjørnstad, O.N. (2013) The Effect of Temperature on Anopheles Mosquito Population Dynamics and the Potential for Malaria Transmission. PLoS ONE, 8, e79276.
https://doi.org/10.1371/journal.pone.0079276

[2]   Mboera, L.E., Bwana, V.M., Rumisha, S. ., Tungu, P.K. and Malima, R.C. (2015) Spatial Abundance and Human Biting Rate of Anopheles Arabiensis and Anopheles Funestus in Savannah and Rice Agro-Ecosystems of Central Tanzania. Geospatial Health, 10.
https://doi.org/10.4081/gh.2015.322

[3]   WHO 2018 (2019) Facts Sheets on World Health Organisation. WHO.
http://www.who.int/mediacentre/factsheets/fs094/en/

[4]   Kabula, B., Derua, Y.A., Tungu, P.K., Massue, D.J., Sambu, E., Mosha, F.W. and Kisinza, W.N. (2011) Malaria Entomological Profile in Tanzania from 1950 to 2010: A Review of Mosquito Distribution, Vectorial Capacity and Insecticide Resistance. Tanzania Journal of Health Research, 13.
https://doi.org/10.4314/thrb.v13i5.2

[5]   Nkuo-Akenji, T., Ntonifor, N.N., Ndukum, M.B., Kimbi, H.K., Abongwa, E.L., Nkwescheu, A., Anong, D.N., Songmbe, M., Boyo, M.G., Ndamukong, K.N., et al. (2008) Environmental Factors Affecting Malaria Parasite Prevalence in Rural Bolifamba, South-West Cameroon. African Journal of Health Sciences, 13, 40-46.
https://doi.org/10.4314/ajhs.v13i1.30816

[6]   Kreppel, K.S., Johnson, P., Govella, N., Pombi, M., Maliti, D. and Ferguson, H. (2015) Comparative Evaluation of the Sticky-Resting-Box-Trap, the Standardised Resting-Bucket-Trap and Indoor Aspiration for Sampling Malaria Vectors. Parasites & Vectors, 8, Article Number: 462.
https://doi.org/10.1186/s13071-015-1066-0

[7]   Mayagaya, V.S., Nkwengulila, G., Lyimo, I.N., Kihonda, J., Mtambala, H., Ngonyani, H., Russell, T.L. and Ferguson, H.M. (2015) The Impact of Livestock on the Abundance, Resting Behaviour and Sporozoite Rate of Malaria Vectors in Southern Tanzania. Malaria Journal, 14, Article Number: 17.
https://doi.org/10.1186/s12936-014-0536-8

[8]   Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A. and Smith, G.M. (2009) Glm and Gam for Count Data. In Mixed Effects Models and Extensions in Ecology with R, Springer, Berlin, 209-243.
https://doi.org/10.1007/978-0-387-87458-6_9

[9]   Hilbe, J.M. (2011) Negative Binomial Regression. Cambridge University Press, Cambridge.

[10]   Hilbe, J.M. (2014) Modeling Count Data. Cambridge University Press, Cambridge.

[11]   Ver Hoef, J.M. and Boveng, P.L. (2007) Quasi-Poisson vs. Negative Binomial Regression: How Should We Model Overdispersed Count Data? Ecology, 88, 2766-2772.
https://doi.org/10.1890/07-0043.1

[12]   R Core Team (2016) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

[13]   Bashar, K. and Tuno, N. (2014) Seasonal Abundance of Anopheles Mosquitoes and Their Association with Meteorological Factors and Malaria Incidence in Bangladesh. Parasites & Vectors, 7, Article Number: 442.
https://doi.org/10.1186/1756-3305-7-442

[14]   Paaijmans, K.P. and Thomas, M.B. (2011) The Influence of Mosquito Resting Behaviour and Associated Microclimate for Malaria Risk. Malaria Journal, 10, 1110-1186.
https://doi.org/10.1186/1475-2875-10-183

 
 
Top