Back
 MSA  Vol.10 No.10 , October 2019
Effect of Quenching Temperature on Microstructure and Mechanical Properties of Q1030 Steel
Abstract: In this paper, the law of austenitic grain growth gfg is studied under different heating temperature and insulation time, the suitable grain growth model is established, and the regression calculation method is introduced to verify the correctness of the model. The effect of quenching temperature on the microstructure and strength of steel was studied, and it was proved that the quenching temperature had a significant effect on the microstructure and mechanical properties of Q1030 steel. At the quenching temperature of 880°C - 950°C, with the increase of austenitizing temperature, the hardness and strength of Q1030 steel gradually increased, reaching the maximum value at 950°C. During quenching at 950°C - 1100°C, the hardness and strength of Q1030 steel gradually decreased with the increase of austenitic temperature.
Cite this paper: Wang, J. , Kang, Y. , Yu, H. and Ge, W. (2019) Effect of Quenching Temperature on Microstructure and Mechanical Properties of Q1030 Steel. Materials Sciences and Applications, 10, 665-675. doi: 10.4236/msa.2019.1010047.
References

[1]   Hui, W.J., Dong, H., et al. (2002) Effect of Quenching Temperature on the Mechanical Properties of Dihejingaoqiang. Metal Heat Treatment, 27, 14-16.

[2]   Zhang, Z.B., Sun, X.J., Liu, Q.Y., et al. (2008) Study on the Law of the Growth of Low Carbon Steel Austenite Grains during the Isothermal Process. Journal of Material Heat Treatment, 29, 89-92.

[3]   Zhao, Y.Q., et al. (2019) Effect of Quenching Temperature on Microstructure and Mechanical Properties of 780 MPa Grade Hydropower Steel. Special Steel, 40, 46-50.

[4]   Hui, J., Yu, Y., Wang, C., Wang, L, et al. (2014) Titanium Microalloying Hot Rolling Austenite Grain Coarsening Behavior. Journal of Material Heat Treatment, 35, 140-145.

[5]   Yang, X.L. (2002) Effect of Heating Temperature on Solid Solution and Grain Growth of Second Phase Particles in Pipeline Steel. Iron and Steel Vanadium Titanium, 23, 11-15.

[6]   Yue, Z.X., Zhang, L.W., Liao, S.L., et al. (2008) Study on the Law of Austenite Grain Growth of GCr15 Steel. Journal of Material Heat Treatment, 29, 94-97.

[7]   Devadas, C. (1991) The Thermal and Metallurgical State of Steel Strip during Hot Rolling: Part 3. Microstructural Evolution. Metallurgical Transactions A, 22, 335-342.
https://doi.org/10.1007/BF02656802

[8]   Raghunathan, N. and Sheppard, T. (1986) Microstructural Development during Annealing of Hot Rolled Al-Mg Alloys. Materials Science and Techonology, 6, 542-547.
https://doi.org/10.1179/mst.1989.5.6.542

[9]   Chen, L.Q., Sui, F.L. and Liu, X.H. (2009) Inconel 718 Alloy Blank Crystal Growth Model during Rough Rolling Heating. Journal of Metals, 45, 1242-1248.

[10]   Moon, J., Kim, S., Lee, J. and Lee, C. (2007) Limiting Austenite Grain Size of TiN- Containing Steel Considering the Critical Particle Size. Scripta Materialia, 56, 1083-1086.
https://doi.org/10.1016/j.scriptamat.2007.02.025

[11]   Fernández, J., Illescas, S. and Guilemany, J.M. (2007) Effect of Microalloying Elements on the Austenitic Grain Growth in a Low Carbon HSLA Steel. Materials Letters, 61, 2389-2392.

[12]   Han, L.Z., Chen, R.K., Gu, J.F., et al. (2009) X12CrMoWVNbN10-1-1 Ferrite Heat-Resistant Steel Austenite Grain Growth Behavior Study. Journal of Metals, 45, 1446-1250.

[13]   Hui, W.J., Dong, H., Wang, M.Q., et al. (2002) Effect of Quenching Temperature on the Mechanical Properties of Low-Alloy High-Strength Steel of Cr-Mo-V Series. Metal Thermal Treatment, 27, 14-16.

[14]   Wan, D.C., Yu, W., Li, X.L., et al. (2012) Effect of Quenching Temperature on Microstructure and Mechanical Properties of 550 MPa Thick Steel Plate. Journal of Metals, 48, 455-460.
https://doi.org/10.3724/SP.J.1037.2011.00722

[15]   Duan, Z.T., Li, Y.M., Zhu, F.X., et al. (2012) Effect of Quenching Temperature on the Microstructure and Mechanical Properties of Q690D High Strength Steel. Metal Thermal Treatment, 37, 81-84.

 
 
Top