JEP  Vol.10 No.10 , October 2019
Study the Changes in Soil Organic Carbon of Rice-Maize Cropping System in the Top Layer of Alluvisol Soil in Dan Phuong: A Study of C-13 Stable Isotope Composition (δ13C)
Abstract: In this study, the experiments on field were conducted to examine the change in the content of soil organic carbon (SOC), its C-13 stable isotope composition (δ 13C) and some main physical, chemical parameters (soil moisture, pH, soil density, content of humic, fulvic, total N, total P, total K) in alluvial soil of Dan Phuong region—Vietnam at a depth of 0 - 30 cm when we changed the regime from 2 maize -1 rice crop to 2 rice - 1 maize crop per 1 year. In addition to analyzing the main parameters in soil, C content and its δ 13C value in parts of rice and maize (root, stem and leaf) were also analyzed to assess the contribution of plant residues on soil organic carbon content after harvest. The experiment was carried out in 2016-2017 on the field with the traditional farming method of local farmers along with the tropical monsoon weather conditions of the North-Vietnam. The results showed that SOC had positive correlation with total N, total P parameters and negative correlation with δ 13C values of soil samples at two layers (0 - 15 cm and 15 - 30 cm). The average of total dry biomass (stem, stump + roots and leaf parts) per 1 rice and 1 maize crop was 10.64 Mg/ha and 9.09 Mg/ha, respectively. The average of δ 13C value of rice (C3 plant) was -29.78‰ and its value of maize (C4 plant) was -12.61‰. The new plant (rice) contributes to the total soil organic carbon content from 11.31% to 44.14% at the 0 - 15 cm layer and from 6.55% to 11.31% at the 15 - 30 cm layer in one-year experiment period.
Cite this paper: Thinh, N. , Hoai, V. , Anh, H. , Anh, V. , Chau, T. , Giap, T. and Tien, T. (2019) Study the Changes in Soil Organic Carbon of Rice-Maize Cropping System in the Top Layer of Alluvisol Soil in Dan Phuong: A Study of C-13 Stable Isotope Composition (δ13C). Journal of Environmental Protection, 10, 1361-1372. doi: 10.4236/jep.2019.1010080.

[1]   Accoe, F., Boeckx, P., Van Cleemput, O. and Hofman, G. (2003) Relationship between Soil Organic C Degradability and the Evolution of the δ13C Signature in Profiles under Permanent Grassland. Rapid Communications in Mass Spectrometry, 17, 2591-2596.

[2]   Carter, M.R. (2002) Soil Quality for Sustainable Land Management: Organic Matter and Aggregation Interactions That Maintain Soil Functions. Agronomy Journal, 94, 38-47.

[3]   Mazzilli, S.R., Kemanian, A.R., Ernst, O.R., Jackson, R.B. and Piñeiro, G. (2015) Greater Humication of Belowground than Aboveground Biomass Carbon into Particulate Soil Organic Matter in No-Till Corn and Soybean Crops. Soil Biology and Biochemistry, 85, 22-30.

[4]   Tian, K., Zhao, Y., Xu, X., Hai, N., Huang, B. and Deng, W. (2015) Effects of Long-Term Fertilization and Residue Management on Soil Organic Carbon Changes in Paddy Soils of China: A Meta-Analysis. Agriculture, Ecosystems & Environment, 204, 40-50.

[5]   Baisden, W.T., Amundson, R., Cook, A.C. and Benner, D.L. (2002) Turnover and Storage of C and N in Five Density Fractions from California Annual Grassland Surface Soils. Global Biogeochem. Cycles, 116, 1117-1122.

[6]   Yakir, D., da L. and Sternberg, S.L. (2000) The Use of Stable Isotopes to Study Ecosystem Gas Exchange. Oecologia, 123, 297-311.

[7]   Freudenthal, T., Wagner, T., Wenzhofer, F., Zabel, M. and Wefer, G. (2001) Early Diagenesis of Organic Matter from Sediments of the Eastern Subtropical Atlantic: Evidence from Stable Nitrogen and Carbon Isotopes. Geochimica et Cosmochimica Acta, 65, 1795-1808.

[8]   Garten Jr., C.T. and Hanson, P.J. (2006) Measured Forest Soil C Stocks and Estimated Turnover Times along an Elevation Gradient. Geoderma, 136, 342-352.

[9]   Saree, S., Ponphangnga, P., Sarobol, Ed., Limtong, P. and Chidthaisong, A. (2012) Soil Carbon Sequestration Affected by Cropping Changes from Upland Maize to Flooded Rice Cultivation. Journal of Sustainable Energy & Environment, 3, 147-152.

[10]   Whalen, J.K., Gul, S., Poirier, V., Yanni, S.F., Simpson, M.J., et al. (2014) Transforming Plant Carbon into Soil Carbon: Process-Level Controls on Carbon Sequestration. Canadian Journal of Plant Science, 94, 1065-1073.

[11]   Balesdent, J. and Mariotti, A. (1996) Measurement of Soil Organic Matter Turnover Using 13C Natural Abundance. In: Boutton, T.W. and Yamasaki, S.I., Eds., Mass Spectrometry of Soils, Marcel Dekker, New York, 83-111.

[12]   Boutton, T.W., Archer, S.R., Midwood, A.J., Zitzer, S.F. and Bol, R. (1998) δ 13C Values of Soil Organic Carbon and Their Use in Documenting Vegetation Change in a Subtropical Savanna Ecosystem. Geoderma, 82, 5-41.

[13]   Harris, D., Horwath, W.R. and Van Kessel, C. (2001) Acid Fumigation of Soils to Remove Carbonates Prior to Total Organic Carbon or Carbon-13 Isotopic Analysis. Science Society of America Journal, 65, 1853-1856.

[14]   Ramnarine, R., Voroney, R.P., Wagner-Riddle, C. and Dunfield, K.E. (2011) Carbonate Removal by Acid Fumigation for Measuring the δ13C of Soil Organic Carbon. Canadian Journal of Plant Science, 91, 247-250.