[1] Accoe, F., Boeckx, P., Van Cleemput, O. and Hofman, G. (2003) Relationship between Soil Organic C Degradability and the Evolution of the δ13C Signature in Profiles under Permanent Grassland. Rapid Communications in Mass Spectrometry, 17, 2591-2596.
https://doi.org/10.1002/rcm.1202
[2] Carter, M.R. (2002) Soil Quality for Sustainable Land Management: Organic Matter and Aggregation Interactions That Maintain Soil Functions. Agronomy Journal, 94, 38-47.
https://doi.org/10.2134/agronj2002.0038
[3] Mazzilli, S.R., Kemanian, A.R., Ernst, O.R., Jackson, R.B. and Piñeiro, G. (2015) Greater Humication of Belowground than Aboveground Biomass Carbon into Particulate Soil Organic Matter in No-Till Corn and Soybean Crops. Soil Biology and Biochemistry, 85, 22-30.
https://doi.org/10.1016/j.soilbio.2015.02.014
[4] Tian, K., Zhao, Y., Xu, X., Hai, N., Huang, B. and Deng, W. (2015) Effects of Long-Term Fertilization and Residue Management on Soil Organic Carbon Changes in Paddy Soils of China: A Meta-Analysis. Agriculture, Ecosystems & Environment, 204, 40-50.
https://doi.org/10.1016/j.agee.2015.02.008
[5] Baisden, W.T., Amundson, R., Cook, A.C. and Benner, D.L. (2002) Turnover and Storage of C and N in Five Density Fractions from California Annual Grassland Surface Soils. Global Biogeochem. Cycles, 116, 1117-1122.
[6] Yakir, D., da L. and Sternberg, S.L. (2000) The Use of Stable Isotopes to Study Ecosystem Gas Exchange. Oecologia, 123, 297-311.
https://doi.org/10.1007/s004420051016
[7] Freudenthal, T., Wagner, T., Wenzhofer, F., Zabel, M. and Wefer, G. (2001) Early Diagenesis of Organic Matter from Sediments of the Eastern Subtropical Atlantic: Evidence from Stable Nitrogen and Carbon Isotopes. Geochimica et Cosmochimica Acta, 65, 1795-1808.
https://doi.org/10.1016/S0016-7037(01)00554-3
[8] Garten Jr., C.T. and Hanson, P.J. (2006) Measured Forest Soil C Stocks and Estimated Turnover Times along an Elevation Gradient. Geoderma, 136, 342-352.
https://doi.org/10.1016/j.geoderma.2006.03.049
[9] Saree, S., Ponphangnga, P., Sarobol, Ed., Limtong, P. and Chidthaisong, A. (2012) Soil Carbon Sequestration Affected by Cropping Changes from Upland Maize to Flooded Rice Cultivation. Journal of Sustainable Energy & Environment, 3, 147-152.
[10] Whalen, J.K., Gul, S., Poirier, V., Yanni, S.F., Simpson, M.J., et al. (2014) Transforming Plant Carbon into Soil Carbon: Process-Level Controls on Carbon Sequestration. Canadian Journal of Plant Science, 94, 1065-1073.
https://doi.org/10.4141/cjps2013-145
[11] Balesdent, J. and Mariotti, A. (1996) Measurement of Soil Organic Matter Turnover Using 13C Natural Abundance. In: Boutton, T.W. and Yamasaki, S.I., Eds., Mass Spectrometry of Soils, Marcel Dekker, New York, 83-111.
[12] Boutton, T.W., Archer, S.R., Midwood, A.J., Zitzer, S.F. and Bol, R. (1998) δ 13C Values of Soil Organic Carbon and Their Use in Documenting Vegetation Change in a Subtropical Savanna Ecosystem. Geoderma, 82, 5-41.
https://doi.org/10.1016/S0016-7061(97)00095-5
[13] Harris, D., Horwath, W.R. and Van Kessel, C. (2001) Acid Fumigation of Soils to Remove Carbonates Prior to Total Organic Carbon or Carbon-13 Isotopic Analysis. Science Society of America Journal, 65, 1853-1856.
https://doi.org/10.2136/sssaj2001.1853
[14] Ramnarine, R., Voroney, R.P., Wagner-Riddle, C. and Dunfield, K.E. (2011) Carbonate Removal by Acid Fumigation for Measuring the δ13C of Soil Organic Carbon. Canadian Journal of Plant Science, 91, 247-250.
https://doi.org/10.4141/cjss10066