Back
 AiM  Vol.9 No.10 , October 2019
Ultrastructural Analysis of Chitosan Antibacterial Activity against Clinical Isolates of Staphylococcus aureus and Escherichia coli
Abstract: The continuous search for an antimicrobial agent led to the identification of potential antimicrobial biomaterials based on polymers naturals, such as chitosan (CS). However, the mechanism of action of antibacterial activity of CS for gram-positive and gram-negative bacteria was not completely elucidated. The aim of this work is to report the antibacterial activity of CS through ultrastructural analyses of the clinical isolates Staphylococcus aureus and Escherichia coli by Transmission Electron Microscopy. The CS has a bactericidal action against S. aureus and E. coli which alters its cellular ultrastructure, such as with collapsed cell walls, condensed chromatin and the increase of intracellulares structures like vacuoles and cell debris. In this way, the CS represents a potential model for the future design of antibacterial in order to control bacterial resistance of patients in hospital settings.
Cite this paper: Oliveira, M. , Peixoto, C. and Amorim, R. (2019) Ultrastructural Analysis of Chitosan Antibacterial Activity against Clinical Isolates of Staphylococcus aureus and Escherichia coli. Advances in Microbiology, 9, 893-903. doi: 10.4236/aim.2019.910055.
References

[1]   Hoagland, D.T., Liu, J., Lee, R.B. and Lee, R.E. (2016) New Agents for the Treatment of Drug-Resistant Mycobacterium tuberculosis. Advanced Drug Delivery Reviews, 102, 55-72.
https://doi.org/10.1016/j.addr.2016.04.026

[2]   Pelgrift, R.Y. and Friedman, A.J. (2013) Nanotechnology as a Therapeutic Tool to Combat Microbial Resistance. Advanced Drug Delivery Reviews, 65, 1803-1815.
https://doi.org/10.1016/j.addr.2013.07.011

[3]   Das, S., Das, M.P. and Das, J. (2013) Fabrication of Porous Chitosan/Silver Nanocomposite Film and Its Bactericidal Efficacy against Multi-Drug Resistant (MDR) Clinical Isolates. Journal of Pharmacy Research, 6, 11-15.
http://linkinghub.elsevier.com/retrieve/pii/S0974694312000072
https://doi.org/10.1016/j.jopr.2012.11.006


[4]   Illum, L. (1998) Chitosan and Its Use as a Pharmaceutical Excipient. Pharmaceutical Research, 15, 1326-1331.
http://www.ncbi.nlm.nih.gov/pubmed/9755881

[5]   Du, W.L., Niu, S.S., Xu, Y.L., Xu, Z.R. and Fan, C.L. (2009) Antibacterial Activity of Chitosan Tripolyphosphate Nanoparticles Loaded with Various Metal Ions. Carbohydrate Polymers, 75, 385-389.
https://doi.org/10.1016/j.carbpol.2008.07.039

[6]   Qi, L., Xu, Z., Jiang, X., Hu, C. and Zou, X. (2004) Preparation and Antibacterial Activity of Chitosan Nanoparticles. Carbohydrate Research, 339, 2693-700.
https://doi.org/10.1016/j.carres.2004.09.007

[7]   Chaubey, P. and Mishra, B. (2014) Mannose-Conjugated Chitosan Nanoparticles Loaded with Rifampicin for the Treatment of Visceral Leishmaniasis. Carbohydrate Polymers, 101, 1101-1108.
http://linkinghub.elsevier.com/retrieve/pii/S0144861713010655
https://doi.org/10.1016/j.carbpol.2013.10.044


[8]   Wu, T., Wu, C., Fu, S., Wang, L., Yuan, C., Chen, S., et al. (2017) Integration of Lysozyme into Chitosan Nanoparticles for Improving Antibacterial Activity. Carbohydrate Polymers, 155, 192-200.
https://doi.org/10.1016/j.carbpol.2016.08.076

[9]   Yilmaz Atay, H. and Çelik, E. (2017) Investigations of Antibacterial Activity of Chitosan in the Polymeric Composite Coatings. Progress in Organic Coatings, 102, 194-200.
http://linkinghub.elsevier.com/retrieve/pii/S0300944015301600
https://doi.org/10.1016/j.porgcoat.2016.10.013


[10]   Lee, M.-K., Chun, S.-K., Choi, W.-J., Kim, J.-K., Choi, S.-H., Kim, A., et al. (2005) The Use of Chitosan as a Condensing Agent to Enhance Emulsion-Mediated Gene Transfer. Biomaterials, 26, 2147-2156.
http://www.ncbi.nlm.nih.gov/pubmed/15576190
https://doi.org/10.1016/j.biomaterials.2004.07.008


[11]   Qin, C., Li, H., Xiao, Q., Liu, Y., Zhu, J. and Du, Y. (2006) Water-Solubility of Chitosan and Its Antimicrobial Activity. Carbohydrate Polymers, 63, 367-374.
https://doi.org/10.1016/j.carbpol.2005.09.023

[12]   Zheng, L.-Y. and Zhu, J.-F. (2003) Study on Antimicrobial Activity of Chitosan with Different Molecular Weights. Carbohydrate Polymers, 54, 527-530.
https://www.sciencedirect.com/science/article/pii/S0144861703002509
https://doi.org/10.1016/j.carbpol.2003.07.009


[13]   Kumar, M., Curtis, A. and Hoskins, C. (2018) Application of Nanoparticle Technologies in the Combat against Anti-Microbial Resistance. Pharmaceutics, 10, 11.
http://www.ncbi.nlm.nih.gov/pubmed/29342903
https://doi.org/10.3390/pharmaceutics10010011


[14]   Sabha, N., Aitken, K., Toelg, C., Panchal, T. and Bagli, D. (2009) Increased Dnmt1 Expression And Activity in Uroepithelial Cells Following Uropathogenig E.Coli Infection. Journal of Pediatric Urology, 5, S21-S22.
https://www.sciencedirect.com/science/article/pii/S1477513109000321
https://doi.org/10.1016/j.jpurol.2009.02.011


[15]   Too, R. (2018) Prevalence, Virulence Genes and Antimicrobial Resistance of Shiga-Toxigenic E. coli in Diarrhoea Patients from Kitale, Kenya. International Journal of Infectious Diseases, 73, 162-163.
https://www.sciencedirect.com/science/article/pii/S1201971218338669
https://doi.org/10.1016/j.ijid.2018.04.3782


[16]   Wang, L. and Ruan, S. (2017) Modeling Nosocomial Infections of Methicillin-Resistant Staphylococcus aureus with Environment Contamination. Scientific Reports, 7, 580.
http://www.nature.com/articles/s41598-017-00261-1
https://doi.org/10.1038/s41598-017-00261-1


[17]   Raafat, D., Leib, N., Wilmes, M., François, P., Schrenzel, J. and Sahl, H.G. (2017) Development of in Vitro Resistance to Chitosan Is Related to Changes in Cell Envelope Structure of Staphylococcus aureus. Carbohydrate Polymers, 157, 146-155.
https://doi.org/10.1016/j.carbpol.2016.09.075

[18]   Noskin, G.A., Rubin, R.J., Schentag, J.J., Kluytmans, J., Hedblom, E.C., Smulders, M., et al. (2005) The Burden of Staphylococcus aureus Infections on Hospitals in the United States. Archives of Internal Medicine, 165, 1756.
http://archinte.jamanetwork.com/article.aspx?doi=10.1001/archinte.165.15.1756
https://doi.org/10.1001/archinte.165.15.1756


[19]   Liu, H., Du, Y., Wang, X. and Sun, L. (2004) Chitosan Kills Bacteria through Cell Membrane Damage. International Journal of Food Microbiology, 95, 147-155.
https://doi.org/10.1016/j.ijfoodmicro.2004.01.022

[20]   Li, J., Wu, Y. and Zhao, L. (2016) Antibacterial Activity and Mechanism of Chitosan with Ultra High Molecular Weight. Carbohydrate Polymers, 148, 200-205.
https://www.sciencedirect.com/science/article/pii/S0144861716303861?via%3Dihub
https://doi.org/10.1016/j.carbpol.2016.04.025


[21]   Batista, A.C.L, Dantas, G.C., Santos, J.S. and Amorim, R.S. (2011) Antimicrobial Effects of Native Chitosan again Opportunistic Gram-Negative Bacteria. Microbiology Journal, 1, 105-112.

[22]   Mututuvari, T.M., Harkins, A.L. and Tran, C.D. (2013) Facile Synthesis, Characterization, and Antimicrobial Activity of Cellulose-Chitosan-Hydroxyapatite Composite Material: A Potential Material for Bone Tissue Engineering. Journal of Biomedical Materials Research Part A, 101, 3266-3277.
http://www.ncbi.nlm.nih.gov/pubmed/23595871
https://doi.org/10.1002/jbm.a.34636


[23]   Li, Z., Yang, F. and Yang, R. (2015) Synthesis and Characterization of Chitosan Derivatives with Dual-Antibacterial Functional Groups. International Journal of Biological Macromolecules, 75, 378-387.
https://www.sciencedirect.com/science/article/pii/S0141813015000677#fig0045
https://doi.org/10.1016/j.ijbiomac.2015.01.056


[24]   Eaton, P., Fernandes, J.C., Pereira, E., Pintado, M.E., and Xavier Malcata, F. (2008) Atomic Force Microscopy Study of the Antibacterial Effects of Chitosans on Escherichia coli and Staphylococcus aureus. Ultramicroscopy, 108, 1128-1134.
https://doi.org/10.1016/j.ultramic.2008.04.015

[25]   Másson, M., Holappa, J., Hjálmarsdóttir, M., Rúnarsson, Ö.V., Nevalainen, T. and Järvinen, T. (2008) Antimicrobial Activity of Piperazine Derivatives of Chitosan. Carbohydrate Polymers, 74, 566-571.
https://www.sciencedirect.com/science/article/pii/S0144861708001720
https://doi.org/10.1016/j.carbpol.2008.04.010


[26]   Ramasamy, M., Lee, J.-H. and Lee, J. (2017) Development of Gold Nanoparticles Coated with Silica Containing the Antibiofilm Drug Cinnamaldehyde and Their Effects on Pathogenic Bacteria. International Journal of Nanomedicine, 12, 2813-2828.
http://www.ncbi.nlm.nih.gov/pubmed/28435260
https://doi.org/10.2147/IJN.S132784


[27]   Kong, M., Chen, X.G., Liu, C.S., Liu, C.G., Meng, X.H. and Yu, L.J. (2008) Antibacterial Mechanism of Chitosan Microspheres in a Solid Dispersing System against E. coli. Colloids Surfaces B: Biointerfaces, 65, 197-202.
https://doi.org/10.1016/j.colsurfb.2008.04.003

[28]   Sanpui, P., Murugadoss, A., Prasad, P.V.D., Ghosh, S.S. and Chattopadhyay, A. (2008) The Antibacterial Properties of a Novel Chitosan-Ag-Nanoparticle Composite. International Journal of Food Microbiology, 124, 142-146.
https://doi.org/10.1016/j.ijfoodmicro.2008.03.004

[29]   Bivas-Benita, M., Van Meijgaarden, K.E., Franken, K.L.M.C., Junginger, H.E., Borchard, G., Ottenhoff, T.H.M., et al. (2004) Pulmonary Delivery of Chitosan-DNA Nanoparticles Enhances the Immunogenicity of a DNA Vaccine Encoding HLA-A*0201-Restricted T-Cell Epitopes of Mycobacterium tuberculosis. Vaccine, 22, 1609-1615.
https://doi.org/10.1016/j.vaccine.2003.09.044

[30]   Guliyeva, U., Oner, F., Ozsoy, S. and Haziroglu, R. (2006) Chitosan Microparticles Containing Plasmid DNA as Potential Oral Gene Delivery System. European Journal of Pharmaceutics and Biopharmaceutics, 62, 17-25.
http://linkinghub.elsevier.com/retrieve/pii/S0939641105002146
https://doi.org/10.1016/j.ejpb.2005.08.006


[31]   Arnoldi, M., Fritz, M., Bäuerlein, E., Radmacher, M., Sackmann, E. and Boulbitch, A. (2000) Bacterial Turgor Pressure Can Be Measured by Atomic Force Microscopy. Physical Review E, 62, 1034-1044.
http://www.ncbi.nlm.nih.gov/pubmed/11088560
https://doi.org/10.1103/PhysRevE.62.1034


 
 
Top