Back
 AS  Vol.10 No.10 , October 2019
Targeted Genome Engineering and Its Application in Trait Improvement of Crop Plants
Abstract: Targeted genome engineering refers to technologies that are used for site-specific genome modifications such as knockout, knockin and transcriptional regulation of genes of interest in organisms. Site-specific recombination system, zinc finger nucleases (ZFNs), transcriptional activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) (CRISPR/Cas9) technologies are the representatives of targeted genome engineering and have been widely used in crop basic and applied research. In this review, we introduce the basic information and action modes of these different genome engineering technologies, summarize the recent progresses of targeted genome engineering technologies and their applications in crop improvement, and propose perspectives for genome engineering-mediated modifications of crop plants in the future.
Cite this paper: Yang, X. , Luo, L. , Mo, B. and Liu, L. (2019) Targeted Genome Engineering and Its Application in Trait Improvement of Crop Plants. Agricultural Sciences, 10, 1312-1342. doi: 10.4236/as.2019.1010097.
References

[1]   Shen, W., Ni, Y., Gao, N., Bian, B., Zheng, S., Lin, X. and Chu, H. (2016) Bacterial Community Composition Is Shaped by Soil Secondary Salinization and Acidification Brought on by High Nitrogen Fertilization Rates. Applied Soil Ecology, 108, 76-83.
https://doi.org/10.1016/j.apsoil.2016.08.005

[2]   Bashagaluke, J.B., Logah, V., Opoku, A., Sarkodie-Addo, J. and Quansah, C. (2018) Soil Nutrient Loss through Erosion: Impact of Different Cropping Systems and Soil Amendments in Ghana. PLoS ONE, 13, e0208250.
https://doi.org/10.1371/journal.pone.0208250

[3]   Monroe, J.G., Powell, T., Price, N., Mullen, J.L., Howard, A., Evans, K., Lovell, J.T. and McKay, J.K. (2018) Drought Adaptation in Arabidopsis thaliana by Extensive Genetic Loss-of-Function. Elife, 7, e41038.
https://doi.org/10.7554/eLife.41038

[4]   Deutsch, C.A., Tewksbury, J.J., Tigchelaar, M., Battisti, D.S., Merrill, S.C., Huey, R.B. and Naylor, R.L. (2018) Increase in Crop Losses to Insect Pests in a Warming Climate. Science, 361, 916-919.
https://doi.org/10.1126/science.aat3466

[5]   Poveda, K., Díaz, M.F. and Ramirez, A. (2018) Can Overcompensation Increase Crop Production? Ecology, 99, 270-280.
https://doi.org/10.1002/ecy.2088

[6]   Ye, X., Al-Babili, S., Klöti, A., Zhang, J., Lucca, P., Beyer, P. and Potrykus, I. (2000) Engineering the Provitamin A (Beta-Carotene) Biosynthetic Pathway into (Carotenoid-Free) Rice Endosperm. Science, 287, 303-305.
https://doi.org/10.1126/science.287.5451.303

[7]   Paine, J.A., Shipton, C.A., Chaggar, S., Howells, R.M., Kennedy, M.J., Vernon, G., Wright, S.Y., Hinchliffe, E., Adams, J.L., Silverstone, A.L. and Drake, R. (2005) Improving the Nutritional Value of Golden Rice through Increased Pro-Vitamin A Content. Nature Biotechnology, 23, 482-487.
https://doi.org/10.1038/nbt1082

[8]   Federico, M.L. and Schmidt, M.A. (2016) Modern Breeding and Biotechnological Approaches to Enhance Carotenoid Accumulation in Seeds. Sub-Cellular Biochemistry, 79, 345-358.
https://doi.org/10.1007/978-3-319-39126-7_13

[9]   Carzoli, A.K., Aboobucker, A.I., Sandall, L.L., Lübberstedt, T.T. and Suza, W.P. (2018) Risks and Opportunities of GM Crops: Bt Maize Example. Global Food Security, 19, 84-91.
https://doi.org/10.1016/j.gfs.2018.10.004

[10]   Huang, J., Hu, R., Rozelle, S. and Pray, C. (2005) Insect-Resistant GM Rice in Farmers’ Fields: Assessing Productivity and Health Effects in China. Science, 308, 688-690.
https://doi.org/10.1126/science.1108972

[11]   Wei, X.D., Zou, H.L., Chu, L.M., Liao, B., Ye, C.M. and Lan, C.Y. (2006) Field Released Transgenic Papaya Affects Microbial Communities and Enzyme Activities in Soil. Plant and Soil, 285, 347-358.
https://doi.org/10.1007/s11104-006-9020-8

[12]   Smyth, S.J. (2017) Genetically Modified Crops, Regulatory Delays, and International Trade. Food and Energy Security, 6, 78-86.
https://doi.org/10.1002/fes3.100

[13]   Rocha-Munive, M.G., Soberón, M., Castañeda, S., Niaves, E., Scheinvar, E., Eguiarte, L.E., Mota-Sánchez, D., Rosales-Robles, E., Nava-Camberos, U., Martínez-Carrillo, J.L., Blanco, C.A., Bravo, A. and Souza, V. (2018) Evaluation of the Impact of Genetically Modified Cotton after 20 Years of Cultivation in Mexico. Frontiers in Bioengineering and Biotechnology, 6, 82.
https://doi.org/10.3389/fbioe.2018.00082

[14]   Sun, N., Abil, Z. and Zhao, H. (2012) Recent Advances in Targeted Genome Engineering in Mammalian Systems. Biotechnology Journal, 7, 1074-1087.
https://doi.org/10.1002/biot.201200038

[15]   Belhaj, K., Chaparro-Garcia, A., Kamoun, S. and Nekrasov, V. (2013) Plant Genome Editing Made Easy: Targeted Mutagenesis in Model and Crop Plants Using the CRISPR/Cas System. Plant Methods, 9, 39.
https://doi.org/10.1186/1746-4811-9-39

[16]   Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A. and Zhang, F. (2013) Multiplex Genome Engineering Using CRISPR/Cas Systems. Science, 339, 819-823.
https://doi.org/10.1126/science.1231143

[17]   Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E. and Church, G.M. (2013) RNA-Guided Human Genome Engineering via Cas9. Science, 339, 823-826.
https://doi.org/10.1126/science.1232033

[18]   Segall, A. (2001) Site-Specific Recombination. Encyclopedia of Life Sciences. John Wiley & Sons, Ltd., New York.
https://doi.org/10.1038/npg.els.0001058

[19]   Esposito, D. and Scocca, J.J. (1997) The Integrase Family of Tyrosine Recombinases: Evolution of a Conserved Active Site Domain. Nucleic Acids Research, 25, 3605-3614.
https://doi.org/10.1093/nar/25.18.3605

[20]   Smith, M.C.M. and Thorpe, H.M. (2002) Diversity in the Serine Recombinases. Molecular Microbiology, 44, 299-307.
https://doi.org/10.1046/j.1365-2958.2002.02891.x

[21]   McLellan, M.A., Rosenthal, N.A. and Pinto, A.R. (2017) Cre-loxP-Mediated Recombination: General Principles and Experimental Considerations. Current Protocols in Mouse Biology, 7, 1-12.
https://doi.org/10.1002/cpmo.22

[22]   Bala, A., Roy, A., Das, A., Chakraborti, D. and Das, S. (2013) Development of Selectable Marker Free, Insect Resistant, Transgenic Mustard (Brassica juncea) Plants Using Cre/lox Mediated Recombination. BMC Biotechnology, 13, 88.
https://doi.org/10.1186/1472-6750-13-88

[23]   Sreekala, C., Wu, L., Gu, K., Wang, D., Tian, D. and Yin, Z. (2005) Excision of a Selectable Marker in Transgenic Rice (Oryza sativa L.) Using a Chemically Regulated Cre/loxP System. Plant Cell Reports, 24, 86-94.
https://doi.org/10.1007/s00299-004-0909-5

[24]   Cuellar, W., Gaudin, A., Solórzano, D., Casas, A., Ñopo, L., Chudalayandi, P., Medrano, G., Kreuze, J. and Ghislain, M. (2006) Self-Excision of the Antibiotic Resistance Gene NPTII Using a Heat Inducible Cre/loxP System from Transgenic Potato. Plant Molecular Biology, 62, 71-82.
https://doi.org/10.1007/s11103-006-9004-3

[25]   Zhang, Y., Li, H., Ouyang, B., Lu, Y. and Ye, Z. (2006) Chemical-Induced Auto Excision of Selectable Markers in Elite Tomato Plants Transformed with a Gene Conferring Resistance to Lepidopteran Insects. Biotechnology Letters, 28, 1247-1253.
https://doi.org/10.1007/s10529-006-9081-z

[26]   Yu, W., Han, F., Gao, Z., Vega, J.M. and Birchler, J.A. (2007) Construction and Behavior of Engineered Minichromosomes in Maize. Proceedings of the National Academy of Sciences of the United States of America, 104, 8924-8929.
https://doi.org/10.1073/pnas.0700932104

[27]   Xu, C., Cheng, Z. and Yu, W. (2011) Construction of Rice Mini-Chromosomes by Telomere-Mediated Chromosomal Truncation. Plant Journal, 70, 1070-1079.
https://doi.org/10.1111/j.1365-313X.2012.04916.x

[28]   Radhakrishnan, P. and Srivastava, V. (2005) Utility of the FLP-FRT Recombination System for Genetic Manipulation of Rice. Plant Cell Reports, 23, 721-726.
https://doi.org/10.1007/s00299-004-0876-x

[29]   Djukanovic, V., Orczyk, W., Gao, H., Sun, X., Garrett, N., Zhen, S., Gordon-Kamm, W., Barton, J. and Lyznik, L.A. (2006) Gene Conversion in Transgenic Maize Plants Expressing FLP/FRT and Cre/loxP Site-Specific Recombination Systems. Plant Biotechnology Journal, 4, 345-357.
https://doi.org/10.1111/j.1467-7652.2006.00186.x

[30]   Würdig, J., Flachowsky, H., Saß, A., Peil, A. and Hanke, M.V. (2015) Improving Resistance of Different Apple Cultivars Using the Rvi6 Scab Resistance Gene in a Cisgenic Approach Based on the Flp/FRT Recombinase System. Molecular Breeding, 35, 95.
https://doi.org/10.1007/s11032-015-0291-8

[31]   Kapusi, E., Kempe, K., Rubtsova, M., Kumlehn, J. and Gils, M. (2012) PhiC31 Integrase-Mediated Site-Specific Recombination in Barley. PLoS ONE, 7, e45353.
https://doi.org/10.1371/journal.pone.0045353

[32]   éva, C., Téglás, F., Zelenyánszki, H., Tamás, C., Juhász, A., Mészáros, K. and László Tamás, L. (2018) Cold Inducible Promoter Driven Cre-Lox System Proved to Be Highly Efficient for Marker Gene Excision in Transgenic Barley. Journal of Biotechnology, 265, 15-24.
https://doi.org/10.1016/j.jbiotec.2017.10.016

[33]   Costa, L.D., Piazza, S., Campa, M., Flachowsky, H., Hanke, M.V. and Malnoy, M. (2016) Efficient Heat-Shock Removal of the Selectable Marker Gene in Genetically Modified Grapevine. Plant Cell, Tissue and Organ Culture, 124, 471-481.
https://doi.org/10.1007/s11240-015-0907-z

[34]   Martin-Ortigosa, S., Peterson, D.J., Valenstein, J.S., Lin, V.S., Trewyn, B.G., Lyznik, L.A. and Wang, K. (2014) Mesoporous Silica Nanoparticle-Mediated Intracellular Cre Protein Delivery for Maize Genome Editing via loxP Site Excision. Plant Physiology, 164, 537-547.
https://doi.org/10.1104/pp.113.233650

[35]   Du, D., Jin, R., Guo, J. and Zhang, F. (2019) Construction of Marker-Free Genetically Modified Maize Using a Heat-Inducible Auto-Excision Vector. Genes, 10, E374.
https://doi.org/10.3390/genes10050374

[36]   Boszorádová, E., Matušíková, I., Libantová, J., Zimová, M. and Moravčíková, J. (2019) Cre-Mediated Marker Gene Removal for Production of Biosafe Commercial Oilseed Rape. Acta Physiologiae Plantarum, 41, 73.
https://doi.org/10.1007/s11738-019-2865-2

[37]   Peng, A., Xu, L., He, Y., Lei, T., Yao, L., Chen, S. and Zou, X. (2015) Efficient Production of Marker-Free Transgenic ‘Tarocco’ Blood Orange (Citrus sinensis Osbeck) with Enhanced Resistance to Citrus Canker Using a Cre/loxP Site-Recombination System. Plant Cell, Tissue and Organ Culture, 123, 1-13.
https://doi.org/10.1007/s11240-015-0799-y

[38]   Kopertekh, L. and Schiemann, J. (2017) Marker Removal in Transgenic Plants Using Cre Recombinase Delivered with Potato Virus X. Methods in Molecular Biology, 1642, 151-168.
https://doi.org/10.1007/978-1-4939-7169-5_10

[39]   Chen, H., Luo, J., Zheng, P., Zhang, X., Zhang, C., Li, X., Wang, M., Huang, Y., Liu, X., Jan, M., Liu, Y., Hu, P. and Tu, J. (2017) Application of Cre-Lox Gene Switch to Limit the Cry Expression in Rice Green Tissues. Scientific Reports, 7, 14505.
https://doi.org/10.1038/s41598-017-14679-0

[40]   Woo, H.J., Qin, Y., Park, S.Y., Park, S.K., Cho, Y.G., Shin, K.S., Lim, M.H. and Cho, H.S. (2015) Development of Selectable Marker-Free Transgenic Rice Plants with Enhanced Seed Tocopherol Content through FLP/FRT-Mediated Spontaneous Auto-Excision. PLoS ONE, 10, e0132667.
https://doi.org/10.1371/journal.pone.0132667

[41]   Zhang, X., Dong, Q., Qiao, X., Qiao, Y., Wang, B., Zhang, K. and Li, G. (2019) Creation and Analysis of Marker Free Transgenic Soybean Germplasm with Low Phosphate Tolerance Transcription Factor GmPTF1 Based on Cre/loxP System. Acta Agronomica Sinica, 45, 683-692.
http://kns.cnki.net/kcms/detail/11.1809.S.20190115.1603.004.html

[42]   Zheng, Y., Pan, Y., Li, J., Zhou, Y, Pan, Y., Ding, Y., Su, C. and Zhang, X. (2016) Visible Marker Excision via Heat-Inducible Cre/LoxP System and Ipt Selection in Tobacco. In Vitro Cellular & Developmental Biology-Plant, 52, 492-499.
https://doi.org/10.1007/s11627-016-9775-4

[43]   Moon, H., Abercrombie, L., Eda, S., Blanvillain, R., Thomson, J., Ow, D. and Stewart Jr., C.N. (2011) Transgene Excision in Pollen Using a Codon Optimized Serine Resolvase CinH-RS2 Site-Specific Recombination System. Plant Molecular Biology, 75, 621-631.
https://doi.org/10.1007/s11103-011-9756-2

[44]   Shao, M., Blechl, A. and Thomson, J.G. (2017) Small Serine Recombination Systems ParA-MRS and CinH-RS2 Perform Precise Excision of Plastid DNA. Plant Biotechnology Journal, 15, 1577-1589.
https://doi.org/10.1111/pbi.12740

[45]   Mészáros, K., éva, C., Kiss, T., Bányai, J., Kiss, E., Téglás, F., Karsai, L.L. and Tamás, L. (2015) Generating Marker-Free Transgenic Wheat Using Minimal Gene Cassette and Cold-Inducible Cre/Lox System. Plant Molecular Biology Reporter, 33, 1221-1231.
https://doi.org/10.1007/s11105-014-0830-1

[46]   Anand, A., Wu, E., Li, Z., TeRonde, S., Arling, M., Lenderts, B., Mutti, J.S., Gordon-Kamm, W., Jones, T.J. and Chilcoat, N.D. (2019) High Efficiency Agrobacterium-Mediated Site-Specific Gene Integration in Maize Utilizing the FLP-FRT Recombination System. Plant Biotechnology Journal, 17, 1636-1645.
https://doi.org/10.1111/pbi.13089

[47]   Yan, X., Li, C., Yang, J., Wang, L., Jiang, C. and Wei, W. (2017) Induction of Telomere-Mediated Chromosomal Truncation and Behavior of Truncated Chromosomes in Brassica napus. Plant Journal, 91, 700-713.
https://doi.org/10.1111/tpj.13598

[48]   Chawla, R., Ariza-Nieto, M., Wilson, A.J., Moore, S.K. and Srivastava, V. (2006) Transgene Expression Produced by Biolistic-Mediated, Site-Specific Gene Integration Is Consistently Inherited by the Subsequent Generations. Plant Biotechnology Journal, 4, 209-218.
https://doi.org/10.1111/j.1467-7652.2005.00173.x

[49]   Srivastava, V. (2019) Gene Stacking in Plants through the Application of Site-Specific Recombination and Nuclease Activity. Methods in Molecular Biology, 1864, 267-277.
https://doi.org/10.1007/978-1-4939-8778-8_18

[50]   Li, Z., Xing, A., Moon, B.P., McCardell, R.P., Mills, K. and Falco, S.C. (2009) Site-Specific Integration of Transgenes in Soybean via Recombinase-Mediated DNA Cassette Exchange. Plant Physiology, 151, 1087-1095.
https://doi.org/10.1104/pp.109.137612

[51]   Ebinuma, H., Nakahama, K. and Nanto, K. (2015) Enrichments of Gene Replacement Events by Agrobacterium-Mediated Recombinase-Mediated Cassette Exchange. Molecular Breeding, 35, 82.
https://doi.org/10.1007/s11032-015-0215-7

[52]   Vibha Srivastava, V. and Gidoni, D. (2010) Site-Specific Gene Integration Technologies for Crop Improvement. In Vitro Cellular & Developmental Biology-Plant, 46, 219-232.
https://doi.org/10.1007/s11627-009-9274-y

[53]   Beerli, R.R. and Barbas, C.F. (2002) Engineering Polydactyl Zinc-Finger Transcription Factors. Nature Biotechnology, 20, 135-141.
https://doi.org/10.1038/nbt0202-135

[54]   Perez, E.E., Wang, J., Miller, J.C., Jouvenot, Y., Kim, K.A., Liu, O., Wang, N., Lee, G., Bartsevich, V.V., Lee, Y.L., Guschin, D.Y., Rupniewski, I., Waite, A.J., Carpenito, C., Carroll, R.G., Orange, J.S., Urnov, F.D., Rebar, E.J., Ando, D., Gregory, P.D., Riley, J.L., Holmes, M.C. and June, C.H. (2008) Establishment of HIV-1 Resistance in CD4+ T Cells by Genome Editing Using Zinc-Finger Nucleases. Nature Biotechnology, 26, 808-816.
https://doi.org/10.1038/nbt1410

[55]   Holt, N., Wang, J., Kim, K., Friedman, G., Wang, X., Taupin, V., Crooks, G.M., Kohn, D.B., Gregory, P.D., Holmes, M.C. and Cannon, P.M. (2010) Human Hematopoietic Stem/Progenitor Cells Modified by Zinc-Finger Nucleases Targeted to CCR5 Control HIV-1 in Vivo. Nature Biotechnology, 28, 839-847.
https://doi.org/10.1038/nbt.1663

[56]   Shukla, V.K., Doyon, Y., Miller, J.C., DeKelver, R.C., Moehle, E.A., Worde, S.E., Mitchell, J.C., Arnold, N.L., Gopalan, S., Meng, X., Choi, V.M., Rock, J.M., Wu, Y.Y., Katibah, G.E., Gao, Z., McCaskill, D., Simpson, M.A., Blakeslee, B., Greenwalt, S.A., Butler, H.J., Hinkley, S.J., Zhang, L., Rebar, E.J., Gregory, P.D. and Urnov, F.D. (2009) Precise Genome Modification in the Crop Species Zea mays Using Zinc-Finger Nucleases. Nature, 459, 437-441.
https://doi.org/10.1038/nature07992

[57]   Li, H., Haurigot, V., Doyon, Y., Li, T., Wong, S.Y., Bhagwat, A.S., Malani, N., Anguela, X.M., Sharma, R., Ivanciu, L., Murphy, S.L., Finn, J.D., Khazi, F.R., Zhou, S., Paschon, D.E., Rebar, E.J., Bushman, F.D., Gregory, P.D., Holmes, M.C. and High, K.A. (2011) In Vivo Genome Editing Restores Homostasis in a Mouse Model of Haemophilia. Nature, 475, 217-221.
https://doi.org/10.1038/nature10177

[58]   Zou, J., Mali, P., Huang, X., Dowey, S.N. and Cheng, L. (2011) Site-Specific Gene Correction of a Point Mutation in Human iPS Cells Derived from an Adult Patient with Sickle Cell Disease. Blood, 118, 4599-4608.
https://doi.org/10.1182/blood-2011-02-335554

[59]   Soldner, F., Laganière, J., Cheng, A.W., Hockemeyer, D., Gao, Q., Alagappan, R., Khurana, V., Golbe, L.I., Myers, R.H., Lindquist, S., Zhang, L., Guschin, D., Fong, L.K., Vu, B.J., Meng, X., Urnov, F.D., Gregory, P.D., Zhang, H.S. and Jaenisch, R. (2011) Generation of Isogenic Pluripotent Stem Cells Differing Exclusively at Two Early Onset Parkinson Point Mutations. Cell, 146, 659.
https://doi.org/10.1016/j.cell.2011.06.019

[60]   Cai, C.Q., Doyon, Y., Ainley, W.M., Miller, J.C., DeKelver, R.C., Moehle, E.A., Rock, J.M., Lee, Y., Garrison, R., Schulenberg, L., Blue, R., Worden, A., Baker, L., Faraji, F., Zhang, L., Holmes, M.C., Rebar, E.J., Collingwood, T.N., Rubin-Wilson, B., Gregory, P.D., Urnov, F.D. and Petolino, J.F. (2009) Targeted Transgene Integration in Plant Cells Using Designed Zinc Finger Nucleases. Plant Molecular Biology, 69, 699-709.
https://doi.org/10.1007/s11103-008-9449-7

[61]   Kelly, K.F. and Daniel, J.M. (2006) POZ for Effect-POZ-ZF Transcription Factors in Cancer and Development. Trends in Cell Biology, 16, 578-587.
https://doi.org/10.1016/j.tcb.2006.09.003

[62]   Peer, R., Rivlin, G., Golobovitch, S., Lapidot, M., Gal-On, A., Vainstein, A., Tzfira, T. and Flaishman, M.A. (2015) Targeted Mutagenesis Using Zinc-Finger Nucleases in Perennial Fruit Trees. Planta, 241, 941-951.
https://doi.org/10.1007/s00425-014-2224-x

[63]   Lu, H.W., Klocko, A.L., Dow, M., Ma, C., Amarasinghe, V. and Strauss, S.H. (2016) Low Frequency of Zinc-Finger Nuclease-Induced Mutagenesis in Populus. Molecular Breeding, 36, 121.
https://doi.org/10.1007/s11032-016-0546-z

[64]   Townsend, J.A., Wright, D.A., Winfrey, R.J., Fu, F., Maeder, M.L., Joung, J.K. and Voytas, D.F. (2009) High-Frequency Modification of Plant Genes Using Engineered Zinc-Finger Nucleases. Nature, 459, 442-445.
https://doi.org/10.1038/nature07845

[65]   Petolino, J.F., Worden, A., Curlee, K., Connell, J., Strange Moynahan, T.L., Larsen, C. and Russell, S. (2010) Zinc Finger Nuclease-Mediated Transgene Deletion. Plant Molecular Biology, 73, 617-628.
https://doi.org/10.1007/s11103-010-9641-4

[66]   Curtin, S.J., Zhang, F., Sander, J.D., Haun, W.J., Starker, C., Baltes, N.J., Reyon, D., Dahlborg, E.J., Goodwin, M.J., Coffman AP, Dobbs, D., Joung, J.K., Voytas, D.F. and Stupar, R.M. (2011) Targeted Mutagenesis of Duplicated Genes in Soybean with Zinc-Finger Nucleases. Plant Physiology, 156, 466-473.
https://doi.org/10.1104/pp.111.172981

[67]   Ainley, W.M., Sastry-Dent, L., Welter, M.E., Murray, M.G., Zeitler, B., Amora, R., Corbin, D.R., Miles, R.R., Arnold, N.L., Strange, T.L., Simpson, M.A., Cao, Z., Carroll, C., Pawelczak, K.S., Blue, R., West, K., Rowland, L.M., Perkins, D., Samuel, P., Dewes, C.M., Shen, L., Sriram, S., Evans, S.L., Rebar, E.J., Zhang, L., Gregory, P.D., Urnov, F.D., Webb, S.R. and Petolino, J.F. (2013) Trait Stacking via Targeted Genome Editing. Plant Biotechnology Journal, 11, 1126-1134.
https://doi.org/10.1111/pbi.12107

[68]   Kumar, S., AlAbed. D., Worden, A., Novak, S., Wu, H., Ausmus, C., Beck, M., Robinson, H., Minnicks, T., Hemingway, D., Lee, R., Skaggs, N., Wang, L., Marri, P. and Gupta, M. (2015) A Modular Gene Targeting System for Sequential Transgene Stacking in Plants. Journal of Biotechnology, 207, 12-20.
https://doi.org/10.1016/j.jbiotec.2015.04.006

[69]   Kumar, S., Worden, A., Novak, S., Lee, R. and Petolino, J.F. (2016) A Trait Stacking System via Intragenomic Homologous Recombination. Planta, 244, 1157-1166.
https://doi.org/10.1007/s00425-016-2595-2

[70]   Cantos, C., Francisco, P., Trijatmiko, K.R., Slamet-Loedin, I. and Chadha-Mohanty, P.K. (2014) Identification of “Safe Harbor” Loci in Indica Rice Genome by Harnessing the Property of Zinc Finger Nucleases to Induce DNA Damage and Repair. Frontiers in Plant Science, 5, 302.
https://doi.org/10.3389/fpls.2014.00302

[71]   Bonawitz, N.D., Ainley, W.M., Itaya, A., Chennareddy, S.R., Cicak, T., Effinger, K., Jiang, K., Mall, T.K., Marri, P.R., Samuel, J.P., Sardesai, N., Simpson, M., Folkerts, O., Sarria, R., Webb, S.R., Gonzalez, D.O., Simmonds, D.H. and Pareddy, D.R. (2019) Zinc Finger Nuclease-Mediated Targeting of Multiple Transgenes to an Endogenous Soybean Genomic Locus via Non-Homologous End Joining. Plant Biotechnology Journal, 17, 750-761.
https://doi.org/10.1111/pbi.13012

[72]   Schneider, K., Schiermeyer, A., Dolls, A., Koch, N., Herwartz, D., Kirchhoff, J., Fischer, R., Russell, S.M., Cao, Z.H., Corbin, D.R., Sastry-Dent, L., Ainley, W.M., Webb, S.R., Schinkel, H. and Schillberg, S. (2016) Targeted Gene Exchange in Plant Cells Mediated by a Zinc Finger Nuclease Double Cut. Plant Biotechnology Journal, 14, 1151-1160.
https://doi.org/10.1111/pbi.12483

[73]   Gupta, M., DeKelver, R.C., Palta, A., Clifford, C., Gopalan, S., Miller, J.C., Novak, S., Desloover, D., Gachotte, D., Connell, J., Flook, J., Patterson, T., Robbins, K., Rebar, E.J., Gregory, P.D., Urnov, F.D. and Petolino, J.F. (2012) Transcriptional Activation of Brassica napus Beta-Ketoacyl-ACP Synthase II with an Engineered Zinc Finger Protein Transcription Factor. Plant Biotechnology Journal, 10, 783-791.
https://doi.org/10.1111/j.1467-7652.2012.00695.x

[74]   Rinaldo, A.R. and Ayliffe, M. (2015) Gene Targeting and Editing in Crop Plants: A New Era of Precision Opportunities. Molecular Breeding, 35, 40.
https://doi.org/10.1007/s11032-015-0210-z

[75]   Gaj, T., Gersbach, C.A. and Barbas, C.F. (2013) ZFN, TALEN and CRISPR/Cas-Based Methods for Genome Engineering. Trends in Biotechnology, 31, 397-405.
https://doi.org/10.1016/j.tibtech.2013.04.004

[76]   Li, T., Liu, B., Spalding, M.H., Weeks, D.P. and Yang, B. (2012) High-Efficiency TALEN-Based Gene Editing Produces Disease-Resistant Rice. Nature Biotechnology, 30, 390-392.
https://doi.org/10.1038/nbt.2199

[77]   Shan, Q., Zhang, Y., Chen, K., Zhang, K. and Gao, C. (2015) Creation of Fragrant Rice by Targeted Knockout of the OsBADH2 Gene Using TALEN Technology. Plant Biotechnology Journal, 13, 791-800.
https://doi.org/10.1111/pbi.12312

[78]   Gao, X., Tsang, J.C., Gaba, F., Wu, D., Lu, L. and Liu, P. (2014) Comparison of TALE Designer Transcription Factors and the CRISPR/dCas9 in Regulation of Gene Expression by Targeting Enhancers. Nucleic Acids Research, 42, e155.
https://doi.org/10.1093/nar/gku836

[79]   Sun, Z., Li, N., Huang, G., Xu, J., Pan, Y., Wang, Z., Tang, Q., Song, M. and Wang, X. (2013) Site-Specific Gene Targeting Using Transcription Activator-Like Effector (TALE)-Based Nuclease in Brassica oleracea. Journal of Integrative Plant Biology, 55, 1092-1103.
https://doi.org/10.1111/jipb.12091

[80]   Char, S.N., Unger-Wallace, E., Frame, B., Briggs, S.A., Main, M., Spalding, M.H., Spalding, M.H., Vollbrecht, E., Wang, K. and Yang, B. (2015) Heritable Site-Specific Mutagenesis Using TALENs in Maize. Plant Biotechnology Journal, 13, 1002-1010.
https://doi.org/10.1111/pbi.12344

[81]   Kelliher, T., Starr, D., Richbourg, L., Chintamanani, S., Delzer, B., Nuccio, M.L., Green, J., Chen, Z., McCuiston, J., Wang, W., Liebler, T., Bullock, P. and Martin, B. (2017) MATRILINEAL, a Sperm-Specific Phospholipase, Triggers Maize Haploid Induction. Nature, 542, 105-109.
https://doi.org/10.1038/nature20827

[82]   Wen, S., Liu, H., Li, X., Chen, X., Hong, Y., Li, H., Lu, Q. and Liang, X. (2018) TALEN-Mediated Targeted Mutagenesis of Fatty Acid Desaturase 2 (FAD2) in Peanut (Arachis hypogaea L.) Promotes the Accumulation of Oleic Acid. Plant Molecular Biology, 97, 177-185.
https://doi.org/10.1007/s11103-018-0731-z

[83]   Sawai, S., Ohyama, K., Yasumoto, S., Seki, H., Sakuma, T., Yamamoto, T., Takebayashi, Y., Kojima, M., Sakakibara, H., Aoki, T., Muranaka, T., Saito, K. and Umemoto, N. (2014). Sterol Side Chain Reductase 2 Is a Key Enzyme in the Biosynthesis of Cholesterol, the Common Precursor of Toxic Steroidal Glycoalkaloids in Potato. Plant Cell, 26, 3763-3774.
https://doi.org/10.1105/tpc.114.130096

[84]   Nicolia, A., Proux-Wéra, E., Åhman, I., Onkokesung, N., Andersson, M., Andreasson, E. and Zhu, L.H. (2015) Targeted Gene Mutation in Tetraploid Potato through Transient TALEN Expression in Protoplasts. Journal of Biotechnology, 204, 17-24.
https://doi.org/10.1016/j.jbiotec.2015.03.021

[85]   Clasen, B.M., Stoddard, T.J., Luo, S., Demorest, Z.L., Li, J., Cedrone, F., Tibebu, R., Davison, S., Ray, E.E., Daulhac, A., Coffman, A., Yabandith, A., Retterath, A., Haun, W., Baltes, N.J., Mathis, L., Voytas, D.F. and Zhang, F. (2016) Improving Cold Storage and Processing Traits in Potato through Targeted Gene Knockout. Plant Biotechnology Journal, 14, 169-176.
https://doi.org/10.1111/pbi.12370

[86]   Ma, J., Xiang, H., Donnelly, D.J., Meng, F.R., Xu, H., Durnford, D. and Li, X. (2017) Genome Editing in Potato Plants by Agrobacterium-Mediated Transient Expression of Transcription Activator-Like Effector Nucleases. Plant Biotechnology Reports, 11, 249-258.
https://doi.org/10.1007/s11816-017-0448-5

[87]   Blanvillain-Baufume, S., Reschke, M., Sole, M., Auguy, F., Doucoure, H., Szurek, B., Meynard, D., Portefaix, M., Cunnac, S., Guiderdoni, E., Boch, J. and Koebnik, R. (2017) Targeted Promoter Editing for Rice Resistance to Xanthomonas oryzae pv. oryzae Reveals Differential Activities for SWEET14-Inducing TAL Effectors. Plant Biotechnology Journal, 15, 306-317.
https://doi.org/10.1111/pbi.12613

[88]   Jung, J.H. and Altpeter, F. (2016) TALEN Mediated Targeted Mutagenesis of Thecaffeic Acid O-Methyltransferase in Highly Polyploid Sugarcane Improves Cell Wall Composition for Production of Bioethanol. Plant Molecular Biology, 92, 131-142.
https://doi.org/10.1007/s11103-016-0499-y

[89]   Kannan, B., Jung, J.H., Moxley, G.W., Lee, S.M. and Altpeter, F. (2018) TALEN-Mediated Targeted Mutagenesis of more than 100 COMT Copies/Alleles in Highly Polyploid Sugarcane Improves Saccharification Efficiency without Compromising Biomass Yield. Plant Biotechnology Journal, 16, 856-866.
https://doi.org/10.1111/pbi.12833

[90]   Haun, W., Coffman, A., Clasen, B.M., Demorest, Z.L., Lowy, A., Ray, E., Retterath, A., Stoddard, T., Juillerat, A., Cedrone, F., Mathis, L., Voytas, D.F. and Zhang, F. (2014) Improved Soybean Oil Quality by Targeted Mutagenesis of the Fatty Acid Desaturase 2 Gene Family. Plant Biotechnology Journal, 12, 934-940.
https://doi.org/10.1111/pbi.12201

[91]   Demorest, Z.L., Coffman, A., Baltes, N.J., Stoddard, T.J., Clasen, B.M., Luo, S., Retterath, A., Yabandith, A., Gamo, M.E., Bissen, J., Mathis, L., Voytas, D.F. and Zhang, F. (2016) Direct Stacking of Sequence-Specific Nuclease-Induced Mutations to Produce High Oleic and Low Linolenic Soybean Oil. BMC Plant Biology, 16, 225.
https://doi.org/10.1186/s12870-016-0906-1

[92]   Zhang, Y., Zhang, F., Li, X., Baller, J.A., Qi, Y., Starker, C.G., Bogdanove, A.J. and Voytas, D.F. (2013) Transcription Activator-Like Effector Nucleases Enable Efficient Plant Genome Engineering. Plant Physiology, 161, 20-27.
https://doi.org/10.1104/pp.112.205179

[93]   Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C. and Qiu, J.L. (2014) Simultaneous Editing of Three Homoeoalleles in Hexaploid Bread Wheat Confers Heritable Resistance to Powdery Mildew. Nature Biotechnology, 32, 947-951.
https://doi.org/10.1038/nbt.2969

[94]   Budhagatapalli, N., Rutten, T., Gurushidze, M., Kumlehn, J. and Hensel, G. (2015) Targeted Modification of Gene Function Exploiting Homology-Directed Repair of TALEN-Mediated Double-Strand Breaks in Barley. G3-Genes Genomes Genetics, 5, 1857-1863.
https://doi.org/10.1534/g3.115.018762

[95]   Butler, N.M., Baltes, N.J., Voytas, D.F. and Douches, D.S. (2016) Geminivirus-Mediated Genome Editing in Potato (Solanum tuberosum L.) Using Sequence-Specific Nucleases. Frontiers in Plant Science, 7, 1045.
https://doi.org/10.3389/fpls.2016.01045

[96]   Forsyth, A., Weeks, T., Richael, C. and Duan, H. (2016) Transcription Activator-Like Effector Nucleases (TALEN)-Mediated Targeted DNA Insertion in Potato Plants. Frontiers in Plant Science, 7, 1572.
https://doi.org/10.3389/fpls.2016.01572

[97]   Li, T., Liu, B., Chen, C.Y. and Yang, B. (2016) TALEN-Mediated Homologous Recombination Produces Site-Directed DNA Base Change and Herbicide-Resistant Rice. Journal of Genetics and Genomics, 43, 297-305.
https://doi.org/10.1016/j.jgg.2016.03.005

[98]   Čermák, T., Baltes, N.J., Čegan, R., Zhang, Y. and Voytas, D.F. (2015) High-Frequency, Precise Modification of the Tomato Genome. Genome Biology, 16, 232.
https://doi.org/10.1186/s13059-015-0796-9

[99]   Terns, M.P. and Terns, R.M. (2011) CRISPR-Based Adaptive Immune Systems. Current Opinion in Microbiology, 14, 321-327.
https://doi.org/10.1016/j.mib.2011.03.005

[100]   Marraffini, L.A. and Sontheimer, E.J. (2008) CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting DNA. Science, 322, 1843-1845.
https://doi.org/10.1126/science.1165771

[101]   Gasiunas, G., Barrangou, R., Horvath, P. and Siksnys, V. (2012) Cas9-crRNA Ribonucleoprotein Complex Mediates Specific DNA Cleavage for Adaptive Immunity in Bacteria. Proceedings of the National Academy of Sciences of the United States of America, 109, E2579-E2586.
https://doi.org/10.1073/pnas.1208507109

[102]   Wiedenheft, B., van Duijn, E., Bultema, J.B., Waghmare, S.P., Zhou, K., Barendregt, A., Westphal, W., Heck, A.J.R., Boekema, E.J., Dickman, M.J. and Doudna. J.A. (2011) RNA-Guided Complex from a Bacterial Immune System Enhances Target Recognition through Seed Sequence Interactions. Proceedings of the National Academy of Sciences of the United States of America, 108, 10092-10097.
https://doi.org/10.1073/pnas.1102716108

[103]   Wang, H., Yang, H., Shivalila, C.S., Dawlaty, M.M., Cheng, A.W., Zhang, F. and Jaenisch, R. (2013) One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering. Cell, 153, 910-918.
https://doi.org/10.1016/j.cell.2013.04.025

[104]   Shalem, O., Sanjana, N.E., Hartenian, E., Shi, X., Scott, D.A., Mikkelson, T., Heckl, D., Ebert, B.L., Root, D.E., Doench, J.G. and Zhang, F. (2014) Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells. Science, 343, 84-87.
https://doi.org/10.1126/science.1247005

[105]   Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B. and Weeks, D.P. (2013) Demonstration of CRISPR/Cas9/sgRNA-Mediated Targeted Gene Modification in Arabidopsis, Tobacco, Sorghum and Rice. Nucleic Acids Research, 41, e188.
https://doi.org/10.1093/nar/gkt780

[106]   Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J., Qiu, J. and Gao, C. (2013) Targeted Genome Modification of Crop Plants Using a CRISPR-Cas System. Nature Biotechnology, 31, 686-688.
https://doi.org/10.1038/nbt.2650

[107]   Ran, F.A., Hsu, P.D., Lin, C.Y., Gootenberg, J.S., Konermann, S., Trevino, A.E., Scott, D.A., Inoue, A., Matoba, S., Zhang. Y. and Zhang, F. (2013) Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity. Cell, 154, 1380-1389.
https://doi.org/10.1016/j.cell.2013.08.021

[108]   Gilbert, L.A., Larson, M.H., Morsut, L., Liu, Z., Brar, G.A., Torres, S.E., Stern-Ginossar, N., Brandman, O., Whitehead, E.H., Doudna, J.A., Lim ,W.A., Weissman, J.S. and Qi, L.S. (2013) CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes. Cell, 154, 442-451.
https://doi.org/10.1016/j.cell.2013.06.044

[109]   Kumlehn, J., Pietralla, J., Hensel, G., Pacher, M. and Puchta, H. (2018) The CRISPR/Cas Revolution Continues: From Efficient Gene Editing for Crop Breeding to Plant Synthetic Biology. Journal of Integrative Plant Biology, 60, 1127-1153.
https://doi.org/10.1111/jipb.12734

[110]   Shimatani, Z., Kashojiya, S., Takayama, M., Terada, R., Arazoe, T., Ishii, H., Teramura, H., Yamamoto, T., Komatsu, H., Miura, K., Ezura, H., Nishida, K., Ariizumi, T. and Kondo, A. (2017) Targeted Base Editing in Rice and Tomato Using a CRISPR-Cas9 Cytidine Deaminase Fusion. Nature Biotechnology, 35, 441-443.
https://doi.org/10.1038/nbt.3833

[111]   Zong, Y., Wang, Y., Li, C., Zhang, R., Chen, K., Ran, Y., Qiu, J.L., Wang, D. and Gao, C. (2017) Precise Base Editing in Rice, Wheat and Maize with a Cas9-Cytidine Deaminase Fusion. Nature Biotechnology, 35, 438-440.
https://doi.org/10.1038/nbt.3811

[112]   Endo, M., Mikami, M., Endo, A., Kaya, H., Itoh, T., Nishimasu, H., Nureki, O. and Toki, S. (2018) Genome Editing in Plants by Engineered CRISPR-Cas9 Recognizing NG PAM. Nature Plants, 5, 14-17.
https://doi.org/10.1038/s41477-018-0321-8

[113]   Hua, K., Tao, X., Yuan, F., Wang, D. and Zhu, J.K. (2018) Precise A·T to G·C Base Editing in the Rice Genome. Molecular Plant, 11, 627-630.
https://doi.org/10.1016/j.molp.2018.02.007

[114]   Kang, B.C., Yun, J.Y., Kim, S.T., Shin, Y., Ryu, J., Choi, M., Woo, J.W. and Kim, J.S. (2018) Precision Genome Engineering through Adenine Base Editing in Plants. Nature Plants, 4, 427-431.
https://doi.org/10.1038/s41477-018-0115-z

[115]   Li, C., Zong, Y., Wang, Y., Jin, S., Zhang, D., Song, Q., Zhang, R. and Gao, C. (2018) Expanded Base Editing in Rice and Wheat Using a Cas9-Adenosine Deaminase Fusion. Genome Biology, 19, 59.
https://doi.org/10.1186/s13059-018-1443-z

[116]   Tian, S., Jiang, L., Cui, X., Zhang, J., Guo, S., Li, M., Zhang, H., Ren, Y., Gong, G., Zong, M., Liu, F., Chen, Q. and Xu, Y. (2018) Engineering Herbicide-Resistant Watermelon Variety through CRISPR/Cas9-Mediated Base-Editing. Plant Cell Reports, 37, 1353-1356.
https://doi.org/10.1007/s00299-018-2299-0

[117]   Yan, F., Kuang, Y., Ren, B., Wang, J., Zhang, D., Lin, H., Yang, B., Zhou, X. and Zhou, H. (2018) Highly Efficient A·T to G·C Base Editing by Cas9n-Guided tRNA Adenosine Deaminase in Rice. Molecular Plant, 11, 631-634.
https://doi.org/10.1016/j.molp.2018.02.008

[118]   Zong, Y., Song, Q., Li, C., Jin, S., Zhang, D., Wang, Y., Qiu, J. and Gao, C. (2018) Efficient C-to-T Base Editing in Plants Using a Fusion of nCas9 and Human APOBEC3A. Nature Biotechnology, 36, 950-953.
https://doi.org/10.1038/nbt.4261

[119]   Malnoy, M., Viola, R., Jung, M.H., Koo, O.J., Kim, S., Kim, J.S., Velasco, R. and Kanchiswamy, C.N. (2016) DNA-Free Genetically Edited Grapevine and Apple Protoplast Using CRISPR/Cas9 Ribonucleoproteins. Frontiers in Plant Science, 7, 1904.
https://doi.org/10.3389/fpls.2016.01904

[120]   Nishitani, C., Hirai, N., Komori, S., Wada, M., Okada, K., Osakabe, K., Yamamoto, T. and Osakabe, Y. (2016) Efficient Genome Editing in Apple Using a CRISPR/Cas9 system. Scientific Reports, 6, 31481.
https://doi.org/10.1038/srep31481

[121]   Kaur, N., Alok, A., Shivani, Kaur, N., Pandey, P., Awasthi, P. and Tiwari, S. (2018) CRISPR/Cas9-Mediated Efficient Editing in Phytoene Desaturase (Pds) Demonstrates Precise Manipulation in Banana cv. Rasthali Genome. Functional & Integrative Genomics, 18, 89-99.
https://doi.org/10.1007/s10142-017-0577-5

[122]   Morineau, C., Bellec, Y., Tellier, F., Gissot, L., Kelemen, Z., Nogue, F. and Faure, J.D. (2017) Selective Gene Dosage by CRISPR-Cas9 Genome Editing in Hexaploid Camelina sativa. Plant Biotechnology Journal, 15, 729-739.
https://doi.org/10.1111/pbi.12671

[123]   Odipio, J., Alicai, T., Ingelbrecht, I., Nusinow, D.A., Bart, R. and Taylor, N.J. (2017) Efficient CRISPR/Cas9 Genome Editing of Phytoene Desaturase in Cassava. Frontiers in Plant Science, 8, 1780.
https://doi.org/10.3389/fpls.2017.01780

[124]   Gomez, M.A., Lin, Z.D., Moll, T., Chauhan, R.D., Hayden, L., Renninger, K., Beyene, G., Taylor, N.J., Carrington, J.C., Staskawicz, B.J. and Bart, R.S. (2019) Simultaneous CRISPR/Cas9-Mediated Editing of Cassava eIF4E Isoforms nCBP-1 and nCBP-2 Reduces Cassava Brown Streak Disease Symptom Severity and Incidence. Plant Biotechnology Journal, 17, 421-434.
https://doi.org/10.1111/pbi.12987

[125]   Peng, A., Chen, S., Lei, T., Xu, L., He, Y., Wu, L., Yao, L. and Zou, X. (2017) Engineering Canker-Resistant Plants through CRISPR/Cas9-Targeted Editing of the Susceptibility Gene CsLOB1 Promoter in Citrus. Plant Biotechnology Journal, 15, 1509-1519.
https://doi.org/10.1111/pbi.12733

[126]   Chandrasekaran, J., Brumin, M., Wolf, D., Leibman, D., Klap, C., Pearlsman, M., Sherman, A., Arazi, T. and Gal-On, A. (2016) Development of Broad Virus Resistance in Non-Transgenic Cucumber Using CRISPR/Cas9 Technology. Molecular Plant Pathology, 17, 1140-1153.
https://doi.org/10.1111/mpp.12375

[127]   Ren, C., Liu, X., Zhang, Z., Wang, Y., Duan, W., Li, S. and Liang, Z. (2016) CRISPR/Cas9-Mediated Efficient Targeted Mutagenesis in Chardonnay (Vitis vinifera L.). Scientific Reports, 6, 32289.
https://doi.org/10.1038/srep32289

[128]   Okuzaki, A., Ogawa, T., Koizuka, C., Kaneko, K., Inaba, M., Imamura, J. and Koizuka, N. (2018) CRISPR/Cas9-Mediated Genome Editing of the Fatty Acid Desaturase 2 Gene in Brassica napus. Plant Physiology and Biochemistry, 131, 63-69.
https://doi.org/10.1016/j.plaphy.2018.04.025

[129]   Sauer, N.J., Narvaez-Vasquez, J., Mozoruk, J., Miller, R.B., Warburg, Z.J., Woodward, M.J., Mihiret, Y.A., Lincoln, T.A., Segami, R.E., Sanders, S.L., Walker, K.A., Beetham, P.R., Schöpke, C.R. and Gocal, G.F. (2016) Oligonucleotide-Mediated Genome Editing Provides Precision and Function to Engineered Nucleases and Antibiotics in Plants. Plant Physiology, 170, 1917-1928.
https://doi.org/10.1104/pp.15.01696

[130]   Andersson, M., Turesson, H., Nicolia, A., Fält, A.S., Samuelsson, M. and Hofvander, P. (2017) Efficient Targeted Multiallelic Mutagenesis in Tetraploid Potato (Solanum tuberosum) by Transient CRISPR-Cas9 Expression in Protoplasts. Plant Cell Reports, 36, 117-128.
https://doi.org/10.1007/s00299-016-2062-3

[131]   Zhou, X., Zha, M., Huang, J., Li, L., Imran, M. and Zhang, C. (2017) StMYB44 Negatively Regulates Phosphate Transport by Suppressing Expression of PHOSPHATE1 in Potato. Journal of Experimental Botany, 68, 1265-1281.
https://doi.org/10.1093/jxb/erx026

[132]   Ye, M., Peng, Z., Tang, D., Yang, Z., Li, D., Xu, Y., Zhang, C. and Huang, S. (2018) Generation of Self-Compatible Diploid Potato by Knockout of S-RNase. Nature Plants, 4, 651-654.
https://doi.org/10.1038/s41477-018-0218-6

[133]   Wang, F., Wang, C., Liu, P., Lei, C., Hao, W., Gao, Y., Liu, Y.G. and Zhao, K. (2016) Enhanced Rice Blast Resistance by CRISPR/Cas9-Targeted Mutagenesis of the ERF Transcription Factor Gene OsERF922. PLoS ONE, 11, 0154027.
https://doi.org/10.1371/journal.pone.0154027

[134]   Cordones, M.N., Mohamed, S., Tanoi, K., Natsuko Kobayashi, N.I., Takagi, K., Vernet, A., Guiderdoni, E., Périn, C., Sentenac, H. and Véry, A.A. (2017) Production of Low-Cs+ Rice Plants by Inactivation of the K+ Transporter OsHAK1 with the CRISPR-Cas System. Plant Journal, 92, 43-56.
https://doi.org/10.1111/tpj.13632

[135]   Yang, X., Chen, L., He, J. and Yu, W. (2017) Knocking out of Carotenoid Catabolic Genes in Rice Fails to Boost Carotenoid Accumulation, But Reveals a Mutation in Strigolactone Biosynthesis. Plant Cell Reports, 36, 1533-1545.
https://doi.org/10.1007/s00299-017-2172-6

[136]   Gao, J., Wang, G., Ma, S., Xie, X., Wu, X., Zhang, X., Wu, Y., Zhao, P. and Xia, Q. (2015) CRISPR/Cas9-Mediated Targeted Mutagenesis in Nicotiana tabacum. Plant Molecular Biology, 87, 99-110.
https://doi.org/10.1007/s11103-014-0263-0

[137]   Wang, L., Chen, L., Li, R., Zhao, R., Yang, M., Sheng, J. and Shen, J. (2017) Reduced Drought Tolerance by CRISPR/Cas9-Mediated SlMAPK3 Mutagenesis in Tomato Plants. Journal of Agricultural and Food Chemistry, 65, 8674-8682.
https://doi.org/10.1021/acs.jafc.7b02745

[138]   Zhang, Y., Liang, Z., Zong, Y., Wang, Y., Liu, J., Chen, K., Qiu, J.L. and Gao, C. (2016) Efficient and Transgene-Free Genome Editing in Wheat through Transient Expression of CRISPR/Cas9 DNA or RNA. Nature Communications, 7, Article No. 12617.
https://doi.org/10.1038/ncomms12617

[139]   Cui, X.C. (2017) Targeted Gene Editing Using CRISPR/Cas9 in a Wheat Protoplast System. University of Ottawa, Ottawa.

[140]   Kim, D., Alptekin, B. and Budak, H. (2018) CRISPR/Cas9 Genome Editing in Wheat. Functional & Integrative Genomics, 18, 31-41.
https://doi.org/10.1007/s10142-017-0572-x

[141]   Wang, W., Pan, Q., He, F., Akhunova, A., Chao, S., Trick, H. and Akhunov, E. (2018) Transgenerational CRISPR-Cas9 Activity Facilitates Multiplex Gene Editing in Allopolyploid Wheat. CRISPR Journal, 1, 65-74.
https://doi.org/10.1089/crispr.2017.0010

[142]   Svitashev, S., Young, J.K., Schwartz, C., Gao, H., Falco, S.C. and Cigan, A.M. (2015) Targeted Mutagenesis, Precise Gene Editing, and Site-Specific Gene Insertion in Maize Using Cas9 and Guide RNA. Plant Physiology, 169, 931-945.
https://doi.org/10.1104/pp.15.00793

[143]   Li, J., Meng, X., Zong, Y., Chen, K., Zhang, H., Liu, J., Li, J. and Gao, C. (2016) Gene Replacements and Insertions in Rice by Intron Targeting Using CRISPR-Cas9. Nature Plants, 2, Article No. 16139.
https://doi.org/10.1038/nplants.2016.139

[144]   Lee, K., Eggenberger, A.L., Banakar, R., McCaw, M.E., Zhu, H., Main, M., Kang, M., Gelvin, S.B. and Wang, K. (2019) CRISPR/Cas9-Mediated Targeted T-DNA Integration in Rice. Plant Molecular Biology, 99, 317-328.
https://doi.org/10.1007/s11103-018-00819-1

[145]   Li, Z., Liu, Z.B., Xing, A., Moon, B.P., Koellhofer, J.P., Huang, L., Ward, R.T., Clifton, E., Falco, S.C. and Cigan, A.M. (2015) Cas9-Guide RNA Directed Genome Editing in Soybean. Plant Physiology, 169, 960-970.
https://doi.org/10.1104/pp.15.00783

[146]   Li, J.F., Norville, J.E., Aach, J., McCormack, M., Zhang, D., Bush, J., Church, G.M. and Sheen, J. (2013) Multiplex and Homologous Recombination-Mediated Genome Editing in Arabidopsis and Nicotiana benthamiana Using Guide RNA and Cas9. Nature Biotechnology, 31, 688-691.
https://doi.org/10.1038/nbt.2654

[147]   Danilo, B., Perrot, L., Mara, K., Botton, E., Nogué, F. and Mazier, M. (2019) Efficient and Transgene-Free Gene Targeting Using Agrobacterium-Mediated Delivery of the CRISPR/Cas9 System in Tomato. Plant Cell Reports, 38, 459-462.
https://doi.org/10.1007/s00299-019-02373-6

[148]   Gil-Humanes, J., Wang, Y., Liang, Z., Shan, Q., Ozuna, C.V., Sanchez-Leon, S., Baltes, N.J., Starker, C., Barro, F., Gao, C. and Voytas, D.F. (2017) High-Efficiency Gene Targeting in Hexaploid Wheat Using DNA Replicons and CRISPR/Cas9. Plant Journal, 89, 1251-1262.
https://doi.org/10.1111/tpj.13446

[149]   Li, Z., Zhang, D., Xiong, X., Yan, B., Xie, W., Sheen, J. and Li, J.F. (2017) A Potent Cas9-Derived Gene Activator for Plant and Mammalian Cells. Nature Plants, 3, 930.
https://doi.org/10.1038/s41477-017-0046-0

[150]   Lowder, L.G., Zhou, J., Zhang, Y., Malzahn, A., Zhong, Z., Hsieh, T.F., Voytas, D.F., Zhang, Y. and Qi, Y. (2017) Robust Transcriptional Activation in Plants Using Multiplexed CRISPR-Act2.0 and mTALE-Act Systems. Molecular Plant, 11, 245-256.
https://doi.org/10.1016/j.molp.2017.11.010

[151]   Piatek, A., Ali, Z., Baazim, H., Li, L., Abulfaraj, A., Al-Shareef, S., Aouida, M. and Mahfouz, M.M. (2015) RNA-Guided Transcriptional Regulation in Planta via Synthetic dCas9-Based Transcription Factors. Plant Biotechnology Journal, 13, 578-589.
https://doi.org/10.1111/pbi.12284

[152]   Lowder, L.G., Zhang, D., Baltes, N.J., Paul, J.W., Tang, X., Zheng, X., Voytas, D.F., Hsieh, T.F., Zhang, Y. and Qi, Y. (2015) A CRISPR/Cas9 Toolbox for Multiplexed Plant Genome Editing and Transcriptional Regulation. Plant Physiology, 169, 971-985.
https://doi.org/10.1104/pp.15.00636

[153]   Vazquez-Vilar, M., Bernabé-Orts, J.M., Fernandez-Del-Carmen, A., Ziarsolo, P., Blanca, J., Granell, A. and Orzaez, D. (2016) A Modular Toolbox for gRNA-Cas9 Genome Engineering in Plants Based on the GoldenBraid Standard. Plant Methods, 12, 10.
https://doi.org/10.1186/s13007-016-0101-2

[154]   Ran, F.A., Cong, L., Yan, W.X., Scott, D.A., Gootenberg, J.S., Kriz, A.J., Zetsche, B., Shalem, O., Wu, X., Makarova, K.S., Koonin, E.V., Sharp, P.A. and Zhang, F. (2015) In Vivo Genome Editing Using Staphylococcus aureus Cas9. Nature, 520, 186-191.
https://doi.org/10.1038/nature14299

[155]   Steinert, J., Schiml, S., Fauser, F. and Puchta, H. (2015) Highly Efficient Heritable Plant Genome Engineering Using Cas9 Orthologues from Streptococcus thermophilus and Staphylococcus aureus. Plant Journal, 84, 1295-1305.
https://doi.org/10.1111/tpj.13078

[156]   Kaya, H., Mikami, M., Endo, A., Endo, M. and Toki, S. (2016) Highly Specific Targeted Mutagenesis in Plants Using Staphylococcus aureus Cas9. Scientific Reports, 6, Article No. 26871.
https://doi.org/10.1038/srep26871

[157]   Karvelis, T., Gasiunas, G., Young, J., Bigelyte, G., Silanskas, A., Cigan, M. and Siksnys, V. (2015) Rapid Characterization of CRISPR-Cas9 Protospacer Adjacent Motif Sequence Elements. Genome Biology, 16, 253.
https://doi.org/10.1186/s13059-015-0818-7

[158]   Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O., Slaymaker, I.M., Makarova, K.S., Essletzbichler, P., Volz, S.E., Joung, J., van der Oost, J., Regev, A., Koonin, E.V. and Zhang, F. (2015) Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell, 163, 759-771.
https://doi.org/10.1016/j.cell.2015.09.038

[159]   Zetsche, B., Heidenreich, M., Mohanraju, P., Fedorova, I. and Kneppers, J. (2016) Multiplex Gene Editing by CRISPR-Cpf1 Using a Single crRNA Array. Nature Biotechnology, 35, 31-34.
https://doi.org/10.1038/nbt.3737

[160]   Zhang, T., Zheng, Q., Yi, X., An, H., Zhao, Y., Ma, S. and Zhou, G. (2018) Establishing RNA Virus Resistance in Plants by Harnessing CRISPR Immune System. Plant Biotechnology Journal, 16, 1415-1423.
https://doi.org/10.1111/pbi.12881

[161]   Zhang, T., Zhao, Y., Ye, J., Cao, X., Xu, C., Chen, B., An, H., Jiao, Y., Zhang, F., Yang, X. and Zhou, G. (2019) Establishing CRISPR/Cas13a Immune System Conferring RNA Virus Resistance in Both Dicot and Monocot Plants. Plant Biotechnology Journal, 17, 1185-1187.
https://doi.org/10.1111/pbi.13095

[162]   Malzahn, A.A., Tang, X., Lee, K., Ren, Q., Sretenovic, S., Zhang, Y., Chen, H., Kang, M., Bao, Y., Zheng, X., Deng, K., Zhang, T., Salcedo, V., Wang, K., Zhang, Y. and Qi, Y. (2019) Application of CRISPR-Cas12a Temperature Sensitivity for Improved Genome Editing in Rice, Maize, and Arabidopsis. BMC Biology, 17, 9.
https://doi.org/10.1186/s12915-019-0629-5

[163]   Endo, A., Masafumi, M., Kaya, H. and Toki, S. (2016) Efficient Targeted Mutagenesis of Rice and Tobacco Genomes Using Cpf1 from Francisella novicida. Scientific Reports, 6, 38169.
https://doi.org/10.1038/srep38169

[164]   Lee, K., Zhang, Y., Kleinstiver, B.P., Guo, J.A., Aryee, M.J., Miller, J., Malzahn, A., Zarecor, S., Lawrence-Dill, C.J., Joung, J.K., Qi, Y. and Wang, K. (2019) Activities and Specificities of CRISPR/Cas9 and Cas12a Nucleases for Targeted Mutagenesis in Maize. Plant Biotechnology Journal, 17, 362-372.
https://doi.org/10.1111/pbi.12982

[165]   Tang, X., Liu, G., Zhou, J., Ren, Q., You, Q., Tian, L., Xin, X., Zhong, Z., Liu, B., Zheng, X., Zhang, D., Malzahn, A., Gong, Z., Qi, Y., Zhang, T. and Zhang, Y. (2018) A Large-Scale Whole-Genome Sequencing Analysis Reveals Highly Specific Genome Editing by Both Cas9 and Cpf1 (Cas12a) Nucleases in Rice. Genome Biology, 19, 84.
https://doi.org/10.1186/s13059-018-1458-5

[166]   Wang, M., Mao, Y., Lu, Y., Tao, X. and Zhu, J.K. (2017) Multiplex Gene Editing in Rice Using the CRISPR-Cpf1 System. Molecular Plant, 10, 1011-1013.
https://doi.org/10.1016/j.molp.2017.03.001

[167]   Yin, X., Biswal, A.K., Dionora, J., Perdigon, K.M., Balahadia, C.P., Mazumdar, S., Chater, C., Lin, H.C., Coe, R.A., Kretzschmar, T., Gray, J.E., Quick, P.W. and Bandyopadhyay, A. (2017) CRISPR-Cas9 and CRISPR-Cpf1 Mediated Targeting of a Stomatal Developmental Gene EPFL9 in Rice. Plant Cell Reports, 36, 745-757.
https://doi.org/10.1007/s00299-017-2118-z

[168]   Liu, X.S., Wu, H., Ji, X., Stelzer, Y., Wu, X., Czauderna, S., Shu, J., Dadon, D., Young, R.A. and Jaenisch, R. (2016) Editing DNA Methylation in the Mammalian Genome. Cell, 167, 233-247.
https://doi.org/10.1016/j.cell.2016.08.056

[169]   Lei, Y., Zhang, X., Su, J., Jeong, M., Gundry, M.C., Huang, Y.H., Zhou, Y., Li, W. and Goodell, M.A. (2017) Targeted DNA Methylation in Vivo Using an Engineered dCas9-MQ1 Fusion Protein. Nature Communications, 8, Article No. 16026.
https://doi.org/10.1038/ncomms16026

[170]   Hahn, F. and Nekrasov, V. (2019) CRISPR/Cas Precision: Do We Need to Worry about off-Targeting in Plants? Plant Cell Reports, 38, 437-441.
https://doi.org/10.1007/s00299-018-2355-9

 
 
Top