Back
 MSA  Vol.10 No.10 , October 2019
Nanomaterials in Low-Temperatures Fuel Cells—The Latest Reports
Abstract: Nanotechnology is a field of research with objects up to 100 nm in size. Nanomaterials belong to a wide area in the field of material engineering. These include nanolayers, nanoslabs, nanopores, nanotubes, nanofibers, nanoparticles and quantum dots. Nanostructures are characterized by special properties due to their nanometric dimensions. The natural properties of nanostructures allow their wide application in various industries. The paper presents an overview of the application and significance of nanostructures in fuel cell technology, with particular emphasis on nanocatalysts. The article includes the classification of nanomaterials, new hybrid nanostructures, types of surface modification, division by area of application, with particular emphasis on nanomaterials in the advanced energy system. The design and operation of fuel cells and the role of nanoparticles have been described taking into account existing solutions to reduce generator costs. The high price of low temperature fuel cells depends on the number of nanoparticles used. The article describes the risk associated with using products at the nano scale. Higher concentrations of these extremely active materials can be dangerous and can cause ecological problems and harm natural ecosystems.
Cite this paper: Wlodarczyk, R. (2019) Nanomaterials in Low-Temperatures Fuel Cells—The Latest Reports. Materials Sciences and Applications, 10, 643-664. doi: 10.4236/msa.2019.1010046.
References

[1]   Alves, H.J., Junior, C.B., Niklevucz, R.R., Frigo, E.P., Frigo, M.S., Coimbra-Araujo C.H., (2013) Review Overview of Hydrogen Production Technologies from Biogas and the Applications in Fuel Cells. International Journal of Hydrogen Energy, 38, 5215-5225.
https://doi.org/10.1016/j.ijhydene.2013.02.057

[2]   Manoharan, Y., Hosseini, S.H., Butler, B., Alzhahrani, H., Fou Senior, B.T. and Krohn, J. (2019) Hydrogen Fuel Cells Vehicles: Current Status and Future Prospects. Applied Sciences, 9, 2296-2313.
https://doi.org/10.3390/app9112296

[3]   Ball, M. and Wietschel, M. (2009) The Future of Hydrogen-Opportunities and Challenges. International Journal of Hydrogen Energy, 34, 615-627.
https://doi.org/10.1016/j.ijhydene.2008.11.014

[4]   Mehta, V. and Cooper, J.S. (2003) Review and Analysis of PEM Design and Manufacturing. Journal of Power Sources, 114, 32-53.
https://doi.org/10.1016/S0378-7753(02)00542-6

[5]   Antolini, E., (2004) Recent Developments in Polymer Electrolyte Cell Electrodes. Journal of Applied Electrochemistry, 156, 563-576.
https://doi.org/10.1023/B:JACH.0000021923.67264.bb

[6]   University of Toronto Joint Center for Bioethics (2005) Nanotechnology in Construction-One of the Top Ten Answers to World’s Biggest Problems.
https://www.aggregateresearch.com

[7]   The European Commission (2011) Commission Recommendation of 18 October 2011 on the Definition of Nanomaterial. Official Journal of the European Union, No. 275/38, 38-40.

[8]   Li, Y., Zhang, W., Niu, J. and Chen, Y. (2013) Surface-Coating-Dependent Dissolution, Aggregation, and Reactive Oxygen Species (ROS) Generation of Silver Nanoparticles under Different Irradiation Conditions. Environmental Science & Technology, 47, 10293-10301.
https://doi.org/10.1021/es400945v

[9]   Mathew, J., Joy, J. and George, S.C. (2018) Potential Applications of Nanotechnology in Transportation: A Review. Journal of King Saud University-Science, In Press.
https://doi.org/10.1016/j.jksus.2018.03.015

[10]   Sharma, V.P., Sharma, U., Chattopadhyay, M. and Shukla, V.N. (2018) Advance Applications of Nanomaterials: A Review. Materials Today: Proceedings, 5, 6376-6380.
https://doi.org/10.1016/j.matpr.2017.12.248

[11]   Khan, I., Saeed, K. and Khan, I. (2017) Nanoparticles: Properties, Applications and Toxicities. Arabian Journal of Chemistry, In Press.
https://doi.org/10.1016/j.arabjc.2017.05.011

[12]   Rajput, N. (2015) Methods of Preparation of Nanoperticles—A Review. International Journal of Advanced Engineering Technology, 7, 1806-1811.

[13]   Hasany, S.F., Ahmad, I., Ranjan, J. and Rehman, A. (2012) Systematic Review of the Preparation Techniques of Iron Oxide Magnetic Nanoparticles. Nanoscience & Nanotechnology, 2, 148-158.
https://doi.org/10.5923/j.nn.20120206.01

[14]   Chang, W., Skandan, G., Hahn, H., Danforth, S.C. and Kear, B.H. (1994) Chemical Vapour Condensation of Nanostructured Ceramic Powders. Nanostructured Materials, 4, 345-351.
https://doi.org/10.1016/0965-9773(94)90144-9

[15]   Stone, V., Nowack, B., Baun, A., van den Brick, N., von der Kramer, F., Dusinska, M., Handy, R., Hankin, S., Hasselov, M., Joner, E. and Fernandes, T.F. (2010) Nanomaterials for Environmental Studies: Classification, Reference Material Issues, and Strategies for Physico-Chemical Characterization. Science of the Total Environment, 408, 1745-1754.
https://doi.org/10.1016/j.scitotenv.2009.10.035

[16]   Fadeel, B. and Garcia-Bennett, A.E. (2010) Better Safe than Sorry: Understanding the Toxicological Properties of Inorganic Nanoparticles Manufactured for Biomedical Application. Advanced Drug Delivery Reviews, 62, 362-374.
https://doi.org/10.1016/j.addr.2009.11.008

[17]   Moritz, M. (2012) Zastosowanie nanomaterialów w naukach medycznych. Chemik, 66, 219-226.

[18]   Zhang, Y., Zhi. Z., Jing, T., Zhang, J., Wang, Z. and Wang, S. (2010) Spherical Mesoporous Silica Nanoparticles for Loading and Release of the Poorly Water-Soluble Drug Telmisartan. Journal of Controlled Release, 145, 257-263.
https://doi.org/10.1016/j.jconrel.2010.04.029

[19]   Bachmatiuk, A., Borowiak-Palen, E. and Kalenczuk, R.J. (2008) Advances in Engineering of Diameter and Number of Walls Distributions of Carbon Nanotubes in Alcohol-CVD. Nanotechnology, 19, 365605-365612.
https://doi.org/10.1088/0957-4484/19/36/365605

[20]   Gan, T. and Hu, S. (2011) Electrochemical Sensors Based on Graphene Materials. Microchimica Acta, 175, 1-19.
https://doi.org/10.1007/s00604-011-0639-7

[21]   Inagaki, M., Kaneko, K. and Nishizawa, T. (2004) Nanocarbons—Recent Research in Japan. Carbon, 42, 1401-1417.
https://doi.org/10.1016/j.carbon.2004.02.032

[22]   Bolduc, O.R. and Masson, J.-F. (2011) Advances in Surface Plasmon Resonance Sensing with Nanoparticles and Thin Films: Nanomaterials, Surface Chemistry, and Hybrid Plasmonic Techniques. Analytical Chemistry, 83, 8057-8062.
https://doi.org/10.1021/ac2012976

[23]   https://www.eenewspower.com

[24]   Cruho, C.I.C. and Barros, M.T. (2017) Polymeric Nanoparticles: A Study on the Preparation Variables and Characterization Methods. Materials Science and Engineering C, 80, 771-784.
https://doi.org/10.1016/j.msec.2017.06.004

[25]   Akagi, T., Kaneko, T., Kida, T. and Akashi, M. (2005) Preaparation and Characterization of Biodegradable Nanoparticles Based on Poly(G-Glutamic Acid) with l-Phenylalanine as a Protein Carrier. Journal of Controlled Release, 108, 226-236.
https://doi.org/10.1016/j.jconrel.2005.08.003

[26]   Kamal, S., Jayaganthan, R. and Prakash, S. (2009) Evaluation of Cyclic Hot Corrosion Behaviour of Detonation Gun Sprayed Cr3C2-25%NiCr coatings on Nickel- and Iron-Based Superalloys. Surface and Coatings Technology, 203, 1004-1013.
https://doi.org/10.1016/j.surfcoat.2008.09.031

[27]   Krishnamoorthy, P.R., Seetharamu, S. and Sampathkumaran, P. (1993) Influence of the Mass Flux and Impact Angle of the Abrasive on the Erosion Resistance of Materials Used in Pulverized Fuel Bends and Other Components in Thermal Power Stations. Wear, 165, 151-157.
https://doi.org/10.1016/0043-1648(93)90330-O

[28]   Chan, C.K., Peng, H., Liu, G., Mcilwrath, K., Zhang, X.F., Huggins, R.A., et al. (2007) High-Performance Lithium Battery Anodes Using Silicon Nanowires. Nature Nanotechnology, 3, 31-35.
https://doi.org/10.1038/nnano.2007.411

[29]   Bruce, P.G., Freunberger, S.A., Hardwick, L.J. and Tarascon, J.-M. (2012) Li-O2 and Li-S Batteries with High Energy Storage. Nature Materials, 11, 19-29.
https://doi.org/10.1038/nmat3191

[30]   Sharma, P. (2015) Potential Application of Nanomaterials. International Journal for Research in Applied Science & Engineering Technology, 3, 302-304.

[31]   Khot, L.R., Sankaran, S., Maja, J.M., Ehsani, R. and Schuster, E.W. (2012) Application of Nanomaterials in Agricultural Production and Crop Protection: A Review. Crop Protection, 35, 64-70.
https://doi.org/10.1016/j.cropro.2012.01.007

[32]   Zheng, L., Hong, F., Lu, S. and Liu, C. (2005) Effect of Nano-TiO2 on Strength of Naturally Aged Seeds and Growth of Spinach. Biological Trace Element Research, 104, 83-91.
https://doi.org/10.1385/BTER:104:1:083

[33]   Lima, A.C., Ceragioli, H.J., Cardoso, K.C., Peterlevitz, A.C., Zanin, H.G., Baranauskas, V. and Silva, M.J. (2010) Synthesis and Application of Carbon Nanostructures on the Germination of Tomato Seeds. In: Riberio, C., de-Assis, O.B.G., Mattoso, L.H.C. and Mascarenas, S., Eds., Symposium of International Conference on Food and Agricultural Applications of Nanotechnologies, São Pedro, SP, Brazil.

[34]   Bouwmeester, H., Dekkers, S., Noordam, M.Y., Hagens, W.I., Bulder, A.S., de Heer, C., ten Voorde, S.E.C.G.S., Wijnhoven, W.P., Marvin, H.J.P. and Sips, A.J.A.A.M. (2009) Review of Health Safety Aspects of Nanotechnologies in Food Production. Regulatory Toxicology and Pharmacology, 53, 52-62.
https://doi.org/10.1016/j.yrtph.2008.10.008

[35]   Bergeson, L.L. (2010) Nanosilver Pesticide Products: What Does the Future Hold? Environmental Quality Management, 19, 73-82.
https://doi.org/10.1002/tqem.20263

[36]   Boonham, N., Glover, R., Tomlinson, J. and Mumford, R. (2008) Exploiting Generic Platform Technologies for the Detection and Identification of Plant Pathogens. European Journal of Plant Pathology, 121, 355-363.
https://doi.org/10.1007/s10658-008-9284-3

[37]   Singh, K., Panghal, M., Kadyan, S. and Yadav, J.P. (2014) Evaluation of Antimicrobial Activity of Synthesized Silver Nanoparticles Using Phyllanthus amarus and Tinospora cordifolia Medicinal Plants. Journal of Nanomedicine & Nanotechnology, 5, 250-254.
https://doi.org/10.4172/2157-7439.1000250

[38]   Connolly, J.M., Raghavan, V., Owens, P., Wheatley, A., Keogh, I., et al. (2014) Nanogold-Based Photosensitizers Probes for Dual-Model Bioimaging and Therapy of Cancer. Journal of Nanomedicine & Nanotechnology, 5, 249-253.
https://doi.org/10.4172/2157-7439.1000249

[39]   Hsiao, I., Gramatke, A.M., Joksimovic, R., Sokolowski, M., Gradzielski, M., et al. (2014) Size and Cell Type Dependent Uptake of Silica Nanoparticles. Journal of Nanomedicine & Nanotechnology, 5, 248-250.

[40]   Duncan, T.V. (2011) Applications of Nanotechnology in Food Packaging and Food Safety: Barrier Materials, Antimicrobials and Sensors. Journal of Colloid and Interface Science, 363, 1-24.
https://doi.org/10.1016/j.jcis.2011.07.017

[41]   Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva I.V. and Firsov, A.A. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669.
https://doi.org/10.1126/science.1102896

[42]   Malik, M.A., Revaprasadu, N. and Ramasamy, K. (2013) Nanomaterials for Solar Energy. Nanoscience, 1, 29-59.

[43]   Wlodarczyk, R., Zasada, D., Morel, S. and Kacprzak, A. (2016) A Comparison of Nickel Coated and Uncoated Sintered Stainless Steel Used as Bipolar Plates in Low-Temperature Fuel Cells. International Journal of Hydrogen Energy, 39, 1-8.
https://doi.org/10.1016/j.ijhydene.2016.07.231

[44]   Jun, L., Chen, Z., Ma, Z., Pan, F., Curtiss, L.A. and Amine, K. (2016) The Role of Nanotechnology in the Development of Battery Materials for Electric Vehicles. Nature Nanotechnology, 11, 1031-1038.
https://doi.org/10.1038/nnano.2016.207

[45]   Runowski, M. (2014) Nanotechnologia-nanomaterialy, nanoczastki i wielofunkcyjne nanostruktury typu rdzen/powloka. Chemik, 68, 766-775.

[46]   Raab, C., Simko, M., Fideler, U., Nentwich, M. and Gazso, A. (2011) Production of Nanoparticles and Nanomaterials. Nanotrust Dossier, 1-4.

[47]   Liu, Z., Zhou, X. and Qian, Y. (2010) Synthetic Methodologies for Carbon Nanomaterials. Advanced Materials, 22, 1963-1966.
https://doi.org/10.1002/adma.200903813

[48]   Kumar, M., Pathak, A., Singh, M. and Singla, M.I. (2010) Fabrication of Langmuir-Blodgett Film from Polyvinylpyrrolidone Stabilized NiCo Alloy Nanoparticles. Thin Solid Films, 519, 1445-1451.
https://doi.org/10.1016/j.tsf.2010.09.028

[49]   Paul, S., Pearson, C., Molloy, A., Cousins, M.A., Green, M., Kolliopoulou, S., Dimitrakis, P., Normand, P., Tsoukalas, D. and Petty, M.C. (2003) Langmuir-Blodgett Film Deposition of Metallic Nanoparticles and Their Application to Electronic Memory Structures. Nanoletters, 3, 533-536.
https://doi.org/10.1021/nl034008t

[50]   Ganachari, S.V., Banapurmath, N.R., Salimath B., Yaradoddi J.S., Shettar, A.S., et al. (2017) Synthesis Techniques for Preparation of Nanomaterials. In: Martínez, L., Kharissova, O. and Kharisov, B., Eds., Handbook of Ecomaterials, Springer, Cham.
https://doi.org/10.1007/978-3-319-48281-1_149-1

[51]   Wlodarczyk, R. (2016) Technologie wodorowe-wodorowe ogniwa paliwowe. Wiedza i technologia motorem gospodarki, Czestochowa.

[52]   Larminie, J. and Dicks, A. (2003) Fuel Cell Systems Explained. Wiley & Sons, Ltd., New York.
https://doi.org/10.1002/9781118878330

[53]   Gazdzicki, P., Mitzel, J., Dreizler, A,M., Schulze, M. and Friedrich, K.A. (2017) Impact of Platinum Loading on Performance and Degradation of Polymer Electrolyte Fuel Cell Electrodes Studied in a Rainbow Stack. Fuel Cells, 18, 270-278.
https://doi.org/10.1002/fuce.201700099

[54]   Zhang, S., Yuan, X.-Z., Hin, J.N.C., Wang, H., Friedrich, K.A. and Schulze, M. (2009) A Review of Platinum-Based Catalyst Layer Degradation in Proton Exchange Membrane Fuel Cells. Journal of Power Sources, 194, 588-600.
https://doi.org/10.1016/j.jpowsour.2009.06.073

[55]   Majlan, E.H., Rohendi, D., Daud, W.R.W., Husaini, T. and Haque, M.A. (2018) Electrode for Proton Exchange Membrane Fuel Cells: A Review. Renewable and Sustainable Energy Reviews, 89, 117-134.
https://doi.org/10.1016/j.rser.2018.03.007

[56]   Tasic, G.S., Miljanic, S.S., Kaninski, M.P.M., Saponjic, D.P. and Nikolic, V.M. (2009) Non-Noble Metal Catalyst for a Future Pt Free PEMFC. Electrochemistry Communications, 11, 2097-2100.
https://doi.org/10.1016/j.elecom.2009.09.003

[57]   Grigoriev, S.A., Millet, P., Dzhus, K.A., Middleton, H., Saetre, T.O. and Fateev, V.N. (2010) Design and Characterization of Bi-Functional Electrocatalytic Layers for Application in PEM Unitized Regenerative Fuel Cells. International Journal of Hydrogen Energy, 35, 5070-5076.
https://doi.org/10.1016/j.ijhydene.2009.08.081

[58]   Haan, J.L. and Masel, R.I. (2009) The Influence of Solution pH on Rates of an Electrocatalytic Reaction: Formic Acid Electrooxidation on Platinum and Palladium. Electrochimica Acta, 54, 4073-4078.
https://doi.org/10.1016/j.electacta.2009.02.045

[59]   Kim, D.S., Zeid, E.F.A. and Kim, Y.-T. (2010) Additive Treatment Effect of TiO2 as Supports for Pt-Based Electrocatalysts on Oxygen Reduction Reaction Activity. Electrochimica Acta, 55, 3628-3633.
https://doi.org/10.1016/j.electacta.2010.01.055

[60]   Wlodarczyk, R., Chojak, M., Miecznikowski, K., Kolary, A., Kulesza, P.J. and Marassi, R. (2006) Electroreduction of Oxygen at Polyoxometallate-Modified Glassy Cabon-Supported Pt Nanoparticles. Journal of Power Sources, 159, 802-809.
https://doi.org/10.1016/j.jpowsour.2005.11.061

[61]   Chojak, M., Kolary-Zurowska, A., Wlodarczyk, R., Miecznikowski, K., Karnicka, K., Palys, B., Marassi, R. and Kulesza, P.J. (2007) Modification of Pt Nanoparticles with Polyoxometallate Monolayers: Competition between Activation and Blocking of Reactive Sites for the Electrocatalytic Oxygen Reduction. Electrochimica Acta, 52, 5574-5581.
https://doi.org/10.1016/j.electacta.2007.01.063

[62]   Wlodarczyk, R., Kolary-Zurowska, A., Marassi, R., Chojak, M., Kulesza, P.J. and Marassi, R. (2007) Enhancement of Oxygen Reduction by Incorporation of Heteropolytungstate into the Electrocatalytic Ink of Carbon Supported Platinum Nanoparticles. Electrochimica Acta, 52, 3958-3964.
https://doi.org/10.1016/j.electacta.2006.11.011

[63]   Wlodarczyk, R., Dudek A., Kobylecki, R., Bis, Z. (2009) Characteristic of Fuel Cells in Aspect of Theirs Productions and Application. Monografie Komitetu Inzynierii Srodowiska PAN, Lublin, 273-280.

[64]   Zhang, J. (2011) Recent Advances in Cathode Electrocatalysts for PEM Fuel Cells. Frontiers in Energy, 5, 137-148.
https://doi.org/10.1007/s11708-011-0153-y

[65]   Markovic, N.M., Gasteiger, H.A., Grgur, B.N. and Ross P.N. (1999) Oxygen Reduction Reaction on Pt(111): Effects of Bromide. Journal of Electroanalytical Chemistry, 467, 157-163.
https://doi.org/10.1016/S0022-0728(99)00020-0

[66]   Antolini, E. (2003) Review Formation, Microstructural Characteristics and Stability of Carbon Supported Platinum Catalysts for Low Temperature Fuel Cells. Journal of Materials Science, 38, 2995-3005.

[67]   Taniguchi, A., Akita, T., Yasuda, K. and Miyazaki, Y. (2004) Analysis of Electrocatalyst Degradation in PEMFC Caused by Cell Reversal during Fuel Starvation. Journal of Power Sources, 130, 42-49.
https://doi.org/10.1016/j.jpowsour.2003.12.035

[68]   Rajalakshmi, N. and Dhathathreyan, K.S. (2008) Nanostructured Platinum Catalyst Layer Prepared by Pulsed Electrodeposition for use in PEM Fuel Cells. Int. J. Hydrogen Energy, 33, 5672-5677.
https://doi.org/10.1016/j.ijhydene.2008.05.100

[69]   Santos, A.L., Profeti, D. and Olivi, P. (2005) Electrooxidation of Methanol on Pt Microparticles Dispersed on SnO2 Thin Films. Electrochimica Acta, 50, 2615-2621.
https://doi.org/10.1016/j.electacta.2004.11.006

[70]   Iwase, M. and Kawatsu, S. (1995) Optimized Co Tolerant Electrocatalyst for Polimer Electrolyte Fuel Cells. Proceedings of the First International Symposium on Proton Conducting Membrane Fuel Cell, 1, 12-18.
https://doi.org/10.1149/199523.0012PV

[71]   de Bruijn, F.A., Papageorgopoulos, D.C., Sitters, E.F. and Janssen, G.J.M. (2002) The Influence of Carbon Dioxide on PEM Fuel Cell Anodes. Journal of Power Sources, 110, 117-124.
https://doi.org/10.1016/S0378-7753(02)00227-6

[72]   Bonilla, S.H., Zinola, C.F., Rodríguez, J., Díaz, V., Ohanian, M., Martínez, S. and Giannetti, B.F. (2005) Catalityc Effects of Ruthenium and Osmium Spontaneous Deposition on Platinum Surfaces toward Methanol Oxidation. Journal of Colloid and Interface Science, 288, 377-386.
https://doi.org/10.1016/j.jcis.2005.03.039

[73]   Jiang, J. and Kucernak, A. (2002) Electrooxidation of Small Organic Molecules on Mesoporous Precious Metal Catalysts I: CO and Methanol on Platinum. Journal of Electroanalytical Chemistry, 533, 153-165.
https://doi.org/10.1016/S0022-0728(02)01083-5

[74]   Gan, L., Heggen, M., Rudi, S. and Strasser, P. (2012) Core-Shell Compositional Fine Structures of Dealloyed PtxNi1-x Nanoparticles and Their Impact on Oxygen Reduc-tion Catalysis. Nano Letters, 12, 5423-5430.
https://doi.org/10.1021/nl302995z

[75]   Guo, S., et al. (2013) FePt and CoPt Nanowires as Efficient Catalysts for the Oxygen Reduction Reaction. Angewandte Chemie International Edition, 52, 465-468.
https://doi.org/10.1002/anie.201209871

[76]   Choi, S.I., et al. (2013) Synthesis and Characterization of 9 nm Pt-Ni Octahedra with a Record High Activity of 3.3 A/mg(Pt) for the Oxygen Reduction Reaction. Nano Letters, 13, 3420-3425.
https://doi.org/10.1021/nl401881z

[77]   Flyagina, I., Hughes, K.J., Pourkashanian, M. and Ingham, D.B. (2014) DFT Study of the Oxygen Reduction Reaction on Iron, Cobalt and Manganese Macrocycle Active Sites. International Journal of Hydrogen Energy, 39, 21538-21546.
https://doi.org/10.1016/j.ijhydene.2014.09.075

[78]   Wang, E.W., Guo, S.J. and Dong, S.J. (2010) Three-Dimensional Pton-Pd Bimetallic Nanodendrites Supported on Graphene Nanosheet: Facile Synthesis and Used as an Advanced Nanoelectrocatalyst for Methanol Oxidation. ACS Nano, 4, 547-555.
https://doi.org/10.1021/nn9014483

[79]   Gasteiger, H. A. and Markovic, N.M. (2009) Just a Dream—Or Future Reality? Science, 324, 48-49.
https://doi.org/10.1126/science.1172083

[80]   Thompsett, D. (2003) Handbook of Fuel Cells. John Wiley & Sons, Ltd, Chichester, 467.

[81]   Finashina, E.D., Tkachenko, O.P., Startseva, A.Y., Krasovsky, V.G., Kustov, L.M. and Beletskaya, I.P. (2015) Three-Component Au—Chitosan—SiO2 Systems as Heterogeneous Catalysts for Intramolecular Cyclization of 2-(2-Phenylethynyl)Aniline. Russian Chemical Bulletin, 64, 2816-2820.
https://doi.org/10.1007/s11172-015-1232-8

[82]   Chen, A.C. and Holt-Hindle, P. (2010) Platinum-Based Nanostructured Materials: Synthesis, Properties, and Applications. Chemical Reviews, 110, 3767-3804.
https://doi.org/10.1021/cr9003902

[83]   Stamenkovic, V.R., Fowler, B., Mun, B.S., Wang, G.F., Ross, P.N., Lucas, C.A. and Markovic, N.M. (2007) Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability. Science, 315, 493-497.
https://doi.org/10.1126/science.1135941

[84]   Wang, E.K. and Guo, S.J. (2011) Noble Metal Nanomaterials: Controllable Synthesis and Application in Fuel Cells and Analytical Sensors. Nano Today, 6, 240-264.
https://doi.org/10.1016/j.nantod.2011.04.007

[85]   Mukerjee, S., Srinivasan, S., Soriaga, M.P. and Mcbreen, J. (1995) Role of Structural and Electronic-Properties of Pt and Pt Alloys on Electrocatalysis of Oxygen Reduction: An in-Situ XANES and EXAFS Investigation. Journal of the Electrochemical Society, 142, 1409-1422.
https://doi.org/10.1149/1.2048590

[86]   Zhang, J., Sasaki, K., Sutter, E. and Adzic, R.R. (2007) Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters. Science, 315, 220-222.
https://doi.org/10.1126/science.1134569

[87]   Valiyaveettil, S., Asharani, P.V., Yi, L.W. and Gong, Z.Y. (2011) Comparison of the Toxicity of Silver, Gold and Platinum Nanoparticles in Developing Zebrafish Embryos. Nanotoxicology, 5, 43-54.
https://doi.org/10.3109/17435390.2010.489207

[88]   Shao, Y.Y., Yin, G.P. and Gao, Y.Z. (2007) Understanding and Approaches for the Durability Issues of Pt-Based Catalysts for PEM Fuel Cell. Journal of Power Sources, 171, 558-566.
https://doi.org/10.1016/j.jpowsour.2007.07.004

[89]   Gyenge, E., Atwan, M. and Northwood, D. (2006) Electrocatalysis Electrocatalysis of Borohydride Oxidation on Colloidal Pt and Pt-Alloys (Pt-Ir, Pt-Ni, and Pt-Au) and Application for Direct Borohydride Fuel Cell Anodes. Journal of the Electrochemical Society, 153, A150-A158.
https://doi.org/10.1149/1.2131831

[90]   Mu, Y., Liang, H., Hu, J., Jiang, L. and Wan, L. (2005) Controllable Pt Nanoparticle Deposition on Carbon Nanotubes as an Anode Catalyst for Direct Methanol Fuel Cells. The Journal of Physical Chemistry B, 109, 22212-22216.
https://doi.org/10.1021/jp0555448

[91]   Sun, S.H., Jaouen, F., Dodelet, J.P. (2008) Controlled Growth of Pt Nanowires on Carbon Nanospheres and Their Enhanced Performance as Electrocatalysts in PEM Fuel Cells. Advanced Materials, 20, 3900-3904.
https://doi.org/10.1002/adma.200800491

[92]   Wlodarczyk, R. and Kwarciak-Kozlowska, A. (2019) Analysis of the Sorption Possibilities of Silver Nanoparticles of Anthropogenic Origin Using Biochar. Przemysl Chemiczny, 91, 1000-1003.

[93]   Kelsall, R.W., Hamley, I.W. and Geoghegan, M. (2009) Nanotechnologies, PWN, Warszawa 2009.

 
 
Top