WJCMP  Vol.9 No.4 , November 2019
Surface Recombination Concept as Applied to Determinate Silicon Solar Cell Base Optimum Thickness with Doping Level Effect
Abstract: New expressions of back surface recombination of excess minority carriers in the base of silicon solar are expressed dependent on both, the thickness and the diffusion coefficient which is in relationship with the doping rate. The optimum thickness thus obtained from the base of the solar cell allows the saving of the amount of material needed in its manufacture without reducing its efficiency.
Cite this paper: Diop, M. , Ba, H. , Thiam, N. , Diatta, I. , Traore, Y. , Ba, M. , Sow, E. , Mballo, O. and Sissoko, G. (2019) Surface Recombination Concept as Applied to Determinate Silicon Solar Cell Base Optimum Thickness with Doping Level Effect. World Journal of Condensed Matter Physics, 9, 102-111. doi: 10.4236/wjcmp.2019.94008.

[1]   Honma, N. and Munakata, C. (1987) Sample Thickness Dependence of Minority Carrier Lifetimes Measured Using an Ac Photovoltaic Method. Japanese Journal of Applied Physics, 26, 2033-2036.

[2]   Cuevas, A., Fossum, J.G. and Young, R.T. (1985) Influence of the Dopant Density Profile on Minority-Carrier Current in Shallow, Heavily Doped Emitters of Silicon Bipolar Devices. Solid-State Electronics, 28, 247-254.

[3]   Misiakos, K. and Tsamakis, D. (1994) Electron and Hole Mobilities in Lightly Doped Silicon. Applied Physics Letters, 64, 2007-2009.

[4]   Lovejoy, M.L., Melloch, M.R., Ahrenkiel, R.K. and Lundstrom, M.S. (1992) Measurement Considerations for Zero-Field Time-of-Flight Studies of Minority Carrier Diffusion in III-V Semiconductors. Solid-State Electronics, 35, 251-259.

[5]   Ducas, J. (1994) 3D Modelling of a Reverse Cell Made with Improved Multicrystalline Silicon Wafer. Solar Energy Materials & Solar Cells, 32, 71-88.

[6]   Mott, N.F. (1978) Recombination: A Survey. Solid-State Electronics, 21, 1275-1280.

[7]   Neugroschel, A. (1981) Determination of Lifetimes and Recombination Currents in p-n Junction Solar Cells, Diodes, and Transistors. IEEE Transactions on Electron Devices, 29, 108-115.

[8]   De Vischere, P. (1986) Comment on G.J. Rees. Surface Recombination Velocity—A Useful Concept. Solid-State Electronics, 29, 1161-1164.

[9]   Sissoko, G., Sivoththanam, S., Rodot, M. and Mialhe, P. (1992) Constant Illumination-Induced Open Circuit Voltage Decay (CIOCVD) Method, as Applied to High Efficiency Si Solar Cells for Bulk and Back Surface Characterization. 11th European Photovoltaic Solar Energy Conference and Exhibition, Montreux, 352-354.

[10]   Bocande, Y.L.B., Correa, A., Gaye, I., Sow, M.L. and Sissoko, G. (1994) Bulk and Surfaces Parameters Determination in High Efficiency Si Solar Cells. Renewable Energy, 5, 1698-1700.

[11]   Wu, C.Y. and Shen, W.Z. (1980) The Open-Circuit Voltage of Back-Surface-Field (BSF) p-n Junction Solar Cells in Concentrated Sunlight. Solid-State Electronics, 23, 209-216.

[12]   Ndiaye, E.H., Sahin, G., Thiam, A., Dieng, M., Ly Diallo, H., Ndiaye, M. and Sissoko, G. (2015) Study of the Intrinsic Recombination Velocity at the Junction of Silicon Solar under Frequency Modulation and Irradiation. Journal of Applied Mathematics and Physics, 3, 1522-1535.

[13]   Sissoko, G., Nanéma, E., Ndiaye, A.L., Bocandé, Y.L.B. and Adj, M. (1996) Minority Carrier Diffusion Length Measurement in Silicon Solar Cell under Constant White Bias Light. Renewable Energy, 3, 1594-1597.

[14]   Dhariwal, D.R. and Gadre, R. (1983) Modified Drift Field Model for High-Low Transition in Solar Cells. Solid-State Electronics, 26, 1083-1088.

[15]   Hauser, J.R. and Dunbar, P.M. (1975) Minority Carriers Reflecting Properties of Semiconductor High-Low Junctions. Solid-State Electronics, 18, 715-716.

[16]   Fossum, J.G. (1977) Physical Operation of Back-Surface-Field Silicon Solar Cells. IEEE Transactions on Electron Devices, 2, 322-325.

[17]   Ly Diallo, H., Maiga, A.S., Wereme, A. and Sissoko, G. (2008) New Approach of Both Junction and Back Surface Recombination Velocity in a 3D Modelling Study of a Polycrystalline Silicon Solar Cell. The European Physical Journal Applied Physics, 42, 203-211.

[18]   El Ghitani, H. and Martinuzzi, S. (1989) Influence of Dislocations on Electrical Properties of Large Grained Polycrystalline Silicon Cells. Journal of Applied Physics, 66, 1717-1726.

[19]   Zondervan, A., Verhoef, L.A. and Lindholm, F.A. (1988) Measurement Circuits for Silicon-Diode and Solar Cells Lifetime and Surface Recombination Velocity by Electrical Short-Circuit Current Delay. IEEE Transactions on Electron Devices, 35, 85-88.

[20]   Sissoko, G., Museruka, C., Corréa, A., Gaye, I. and Ndiaye, A.L. (1996) Light Spectral Effect on Recombination Parameters of Silicon Solar Cell. Renewable Energy, 3, 1487-1490.

[21]   Flohr, T. and Helbig, R. (1989) Determination of Minority-Carrier Lifetime and Surface Recombination Velocity by Optical-Beam-Induced-Current Measurements at Different Light Wavelengths. Journal of Applied Physics, 66, 3060-3065.

[22]   Murti, M.R. and Reddy, K.V. (1991) Recombination Properties of Photogenerated Minority Carriers in Polycrystalline Silicon. Journal of Applied Physics, 70, 3683-3688.

[23]   Dhariwal, S.R., Mathur, R.K., Mehrotra, D.R. and Mittal, S. (1983) The Physics of p-n Junction Solar Cells Operated under Concentrated Sunlight. Solar Cells, 8, 137-155.

[24]   Oualid, J. and Singal, C.M. (1984) Influence of Illumination on the Grain Boundaries Recombination Velocity in Silicon. Journal of Applied Physics, 55, 1195-1205.

[25]   Rose, B.H. and Weaver, H.T. (1983) Determination of Effective Surface Recombination Velocity and Minority-Carrier Lifetime in High-Efficiency Si Solar Cells. Journal of Applied Physics, 54, 238-247.

[26]   Diasse, O., Diao, A., Ly, I., Diouf, M.S., Diatta, I., Mane, R., Traore, Y. and Sissoko, G. (2018) Back Surface Recombination Velocity Modeling in White Biased Silicon Solar Cell under Steady State. Journal of Modern Physics, 9, 189-201.

[27]   Gueye, M., Ly Diallo, H., Moustapha, A.M., Traore, Y., Diatta, I. and Sissoko, G. (2018) Ac Recombination Velocity in a Lamella Silicon Solar Cell. World Journal of Condensed Matter Physics, 8, 185-196.

[28]   Lindholm, F.A., Liou, J.J., Neugroschel, A. and Jung, T.W. (1987) Determination of Lifetime and Surface Recombination Velocity of p-n Junction Solar Cells and Diodes by Observing Transients IEEE Transactions on Electron Devices, 34, 277-283.

[29]   Kunst, M., Muller, G., Schmidt, R. and Wetzel, H. (1988) Surface and Volume Decay Processes in Semiconductors Studied by Contactlesss Transient Photoconductivity Measurements. Applied Physics, 46, 77-85.

[30]   Barro, F.I., Seidou Maiga, A., Wereme, A. and Sissoko, G. (2010) Determination of Recombination Parameters in the Base of a Bifacial Silicon Solar Cell under Constant Multispectral Light. Physical and Chemical News, 56, 76-84.

[31]   Diao, A., Wade, M., Thiame, M. and Sissoko, G. (2017) Bifacial Silicon Solar Cell Steady Photoconductivity under Constant Magnetic Field and Junction Recombination Velocity Effects. Journal of Modern Physics, 8, 2200-2208.

[32]   Ba, M.L., Ly Diallo, H., Ba, H.Y., Traore, Y., Diatta, I., Diouf, M.S., Wade, M. and Sissoko, G. (2018) Irradiation Energy Effect on an Illuminated Silicon Solar Cell: Maximum Power Point Determination. Journal of Modern Physics, 9, 2141-2155.

[33]   Singh, P., Singh, S.N., Lal, M. and Husain, M. (2008) Temperature Dependence of I-V Characteristics and Performance Parameters of Silicon Solar Cell. Solar Energy Materials & Solar Cells, 92, 1611-1616.

[34]   Burgess, F. and Lindholm, F.A. (1978) Silicon Solar Cell Designs Based on Physical Behavior in Concentrated Sunlight. Solid-State Electronics, 21, 729-737.

[35]   Le Quang, N., Rodot, M., Nijs, J., Ghannam, M. and Coppye, J. (1992) Réponse spectrale de photopiles de haut rendement au silicium multicristallin. Journal de Physique III, 2, 1305-1316.

[36]   Fossum, J.G. (1976) Computer Aided-Numerical Analysis of Silicon Solar Cells. Solid-State Electronics, 19, 269-277.

[37]   Fossum, J.G. and Lee, D.S. (1952) A Physical Model for the Dependence of Carrier Lifetime on Doping Density in Non-Degenerate Silicon. Solid-State Electronics, 15, 741-747.

[38]   Furlan, J. and Amon, S. (1985) Approximation of the Carrier Generation Rate in Illuminated Silicon. Solid-State Electronics, 28, 1241-1243.

[39]   Jain, G.C., Singh, S.N. and Kotnala (1983) Diffusion Length Determination in n+pp+ Based Silicon Solar Cells from the Intensity Dependence of the Short Circuit for Illumination from the p+ Side. Solar Cells, 82, 39-48.

[40]   Sissoko, G., Nanéma, E., Corréa, A., Biteye, P.M., Adj, M. and Ndiaye, A.L. (1998) Silicon Solar Cell Recombination Parameters Determination Using the Illuminated I-V Characteristic. Renewable Energy, 3, 1848-1851.

[41]   Demesmaeker, E., Symons, J., Nijs, J. and Mertens, R. (1991) The Influence of Surface Recombination on the Limiting Efficiency and Optimum Thickness of Silicon Solar Cells. 10th European Photovoltaic Solar Energy Conference, Lisbon, 66-67.

[42]   Meier, D.L., Hwang, J.M. and Campbell, B. (1988) The Effect of Doping Density and Injection Carrier Lifetime as Applied to Bifacial Dendrite Webs Silicon Solar Cell. IEEE Transaction on Electron Device, 35, 70-79.

[43]   Guren, J.E., Del Alamo, J. and Luque, A. (1980) Optimization of p+ Doping Level of n+pp+ Bifacial BSF Solar Cells by Implantation. Electronics Letters, 16, 633-634.