AS  Vol.10 No.9 , September 2019
Recent Advances in the Acclimation Mechanisms and Genetic Improvement of Peanut for Drought Tolerance
Abstract: Peanut (Arachis hypogaea L.) is one of the most important oilseed crops that are cultivated worldwide. Peanut production is now greatly limited by drought stress, which is a major environmental challenge. The urgent task for current peanut research is thus to study the underlying mechanisms of peanut drought tolerance, to identify genes that are closely associated with drought tolerance, and to create new germplasms/varieties with high drought tolerance. In this review, we summarize recent advances in the acclimation mechanisms to water deficiency and the genetic improvement of peanut for drought tolerance, and propose the perspectives for the future peanut research.
Cite this paper: Yang, X. , Luo, L. , Yu, W. , Mo, B. and Liu, L. (2019) Recent Advances in the Acclimation Mechanisms and Genetic Improvement of Peanut for Drought Tolerance. Agricultural Sciences, 10, 1178-1193. doi: 10.4236/as.2019.109088.

[1]   Zhang, L., Yang, X., Tian, L., Chen, L. and Yu, W. (2016) Identification of Peanut (Arachis hypogaea L.) Chromosomes by a Fluorescence in Situ Hybridization System Reveals Multiple Hybridization Events during Tetraploid Peanut Formation. New Phytologist, 211, 1424-1143.

[2]   Wang, X., Xiao, L., Dong, A., Wang, T., Qian, Q., Qi, X., Chen, F., Zuo, J., Yang, S., Gu, H., Chen, Z., Jiang, L., Bai, Y., Kong, H. and Chong, K. (2017) Important Advance in Several Research Fields of Plant Sciences in China for 2016. Chinese Bulletin of Botany, 52, 394-452.

[3]   Chen, X., Li, H., Pandey, M.K., Yang, Q., Wang, X., Garg, V., Li, H., Chi, X., Doddamani, D., Hong, Y., Upadhyaya, H., Guo, H., Khan, A.W., Zhu, F., Zhang, X., Pan, L., Pierce, G.J., Zhou, G., Krishnamohan, K.A., Chen, M., Zhong, N., Agarwal, G., Li, S., Chitikineni, A., Zhang, G.Q., Sharma, S., Chen, N., Liu, H., Janila, P., Li, S., Wang, M., Wang, T., Sun, J., Li, X., Li, C., Wang, M., Yu, L., Wen, S., Singh, S., Yang, Z., Zhao, J., Zhang, C., Yu, Y., Bi, J., Zhang, X., Liu, Z.J., Paterson, A.H., Wang, S., Liang, X., Varshney, R.K. and Yu, S. (2016) Draft Genome of the Peanut A-Genome Progenitor (Arachis duranensis) Provides Insights into Geocarpy, Oil Biosynthesis, and Allergens. Proceedings of the National Academy of Sciences of the United States of America, 113, 6785-6790.

[4]   Bertioli, D.J., Jenkins, J., Clevenger, J., Dudchenko, O., Gao, D., Seijo, G., Leal-Bertioli, S.C.M., Ren, L., Farmer, A.D., Pandey, M.K., Samoluk, S.S., Abernathy, B., Agarwal, G., Ballén-Taborda, C., Cameron, C., Campbell, J., Chavarro, C., Chitikineni, A., Chu, Y., Dash, S., El Baidouri, M., Guo, B., Huang, W., Kim, K.D., Korani, W., Lanciano, S., Lui, C.G., Mirouze, M., Moretzsohn, M.C., Pham, M., Shin, J.H., Shirasawa, K., Sinharoy, S., Sreedasyam, A., Weeks, N.T., Zhang, X., Zheng, Z., Sun, Z., Froenicke, L., Aiden, E.L., Michelmore, R., Varshney, R.K., Holbrook, C.C., Cannon, E.K.S., Scheffler, B.E., Grimwood, J., Ozias-Akins, P., Cannon, S.B., Jackson, S.A. and Schmutz, J. (2019) The Genome Sequence of Segmental Allotetraploid Peanut Arachis hypogaea. Nature Genetics, 51, 877-884.

[5]   Chen, X., Lu, Q., Liu, H., Zhang, J., Hong, Y., Lan, H., Li, H., Wang, J., Liu, H., Li, S., Pandey, M.K., Zhang, Z., Zhou, G., Yu, J., Zhang, G., Yuan, J., Li, X., Wen, S., Meng, F., Yu, S., Wang, X., Siddique, K.H.M., Liu, Z.J., Paterson, A.H., Varshney, R.K. and Liang, X. (2019) Sequencing of Cultivated Peanut, Arachis hypogaea, Yields Insights into Genome Evolution and Oil Improvement. Molecular Plant, 12, 920-934.

[6]   Zhuang, W., Chen, H., Yang, M., Wang, J., Pandey, M.K., Zhang, C., Chang, W.C., Zhang, L., Zhang, X., Tang, R., Garg, V., Wang, X., Tang, H., Chow, C.N., Wang, J., Deng, Y., Wang, D., Khan, A.W., Yang, Q., Cai, T., Bajaj, P., Wu, K., Guo, B., Zhang, X., Li, J., Liang, F., Hu, J., Liao, B., Liu, S., Chitikineni, A., Yan, H., Zheng, Y., Shan, S., Liu, Q., Xie, D., Wang, Z., Khan, S.A., Ali, N., Zhao, C., Li, X., Luo, Z., Zhang, S., Zhuang, R., Peng, Z., Wang, S., Mamadou, G., Zhuang, Y., Zhao, Z., Yu, W., Xiong, F., Quan, W., Yuan, M., Li, Y., Zou, H., Xia, H., Zha, L., Fan, J., Yu, J., Xie, W., Yuan, J., Chen, K., Zhao, S., Chu, W., Chen, Y., Sun, P., Meng, F., Zhuo, T., Zhao, Y., Li, C., He, G., Zhao, Y., Wang, C., Kavikishor, P.B., Pan, R.L., Paterson, A.H., Wang, X., Ming, R. and Varshney, R.K. (2019) The Genome of Cultivated Peanut Provides Insight into Legume Karyotypes, Polyploid Evolution and Crop Domestication. Nature Genetics, 51, 865-876.

[7]   Gao, Z., Jiang, J., Tang, X., Liu, J., Zhong, R., Han, Z., Xiong, F., Huang, Z., Wu, H., Li, Z., He, L. and Tang, R. (2018) Peanut Varieties Selection and Soil Properties Changes under Paddy-Upland Rotation. Journal of Southern Agriculture, 49, 2403-2409.

[8]   Zhang, Z., Dai, L., Li, M., Yu, Q., Zhang, Y. and Wan, S. (2013) Present Status and Development Countermeasures of Peanut Seed Industry. Journal of Agricultural Science and Technology, 15, 30-37.

[9]   Wan, S. (2014) Situation and Developing Strategy of Peanut Industry. Shandong Agricultural Sciences, 46, 128-132.

[10]   Wan, L., Su, W., Li, B., Lei, Y., Yan, L., Kang, L., Huai, D., Chen, Y., Jiang, H. and Liao, S. (2018) Molecular Analysis of Formation of Drought Tolerance Traits in Peanut. Chinese Journal of Oil Crop Sciences, 40, 335-343.

[11]   Ding, H., Zhang, Z., Dai, L., Song, W., Kang, T. and Ci, D. (2013) Responses of Root Morphology of Peanut Varieties Differing in Drought Tolerance to Water-Deficient Stress. Acta Ecologica Sinica, 33, 5169-5176.

[12]   Rowlanda, D.L., Faircloth, W.H., Payton, P., Tissue, D.T., Ferrell, J.A., Ronald, B., Sorensen, R.B. and Butts, C.L. (2012) Primed Acclimation of Cultivated Peanut (Arachis hypogaea L.) through the Use of Deficit Irrigation Timed to Crop Developmental Periods. Agricultural Water Management, 113, 85-95.

[13]   Yao, Z., Xia, G., Wang, S., Hu, J. and Chi, D. (2016) Research Progress of the Effects of Water Stress on Peanut. Chinese Journal of Oil Crop Sciences, 38, 699-704.

[14]   Zhang, Z., Dai, L., Ding, H., Chen, D., Yang, W., Song, W. and Wan, S. (2012) Identification and Evaluation of Drought Resistance in Different Peanut Varieties Widely Grown in Northern China. Acta AgronomicaSinica, 38, 495-504.

[15]   Zhang, G., Shi, X., Ci, D., Ding, H., Yang, J., Tian, J., Zhang, Z. and Dai, L. (2019) Effects of Drought and Salt Stress on Accumulation of Plant Dry Weight and Photosynthetic Characteristics. Journal of Nuclear Agricultural Sciences, 33, 999-1005.

[16]   Sankar, B., Karthishwaran, K. and Somasundaram, R. (2013) Leaf Anatomical Changes in Peanut Plants in Relation to Drought Stress with or without Paclobutrazol and Abscisic Acid. Journal of Phycology, 5, 25-29.

[17]   Kang, T., Dai, L., Li, W., Li, D., Zhang, Y., Ding, H., Chen, J., Zhang, L., Ren, Z. and Zhang, Z. (2017) Effect of Drought Stress on Root Physiological Characteristics, Yield and Quality of Different Peanut Varieties. Journal of Peanut Sciences, 46, 53-58.

[18]   Cheng, X., Zhao, C., Wang, M., Wang, Y. and Shan, G. (2010) Effects of Drought Stress at Different Growth Stages on Drought Resistance Index and Yield of Peanut. Journal of Qingdao Agricultural University (Natural Sciences), 27, 282-284.

[19]   Liu, J., Zhao, C., Wu, N., Wang, Y. and Wang, M. (2011) Effects of Drought and Rewatering at Seedling Stage on Photosynthetic Characteristics and Water Use Efficiency of Peanut. Scientia Agricultura Sinica, 44, 469-476.

[20]   Xiong, J., Li, S., Chen, L., Zou, X., Song, L. and Zou, X. (2016) Effects of Drought Stress on Physiological Traits and Yield of Different Drought-Tolerant Peanut Varieties. Acta Agriculturae Jiangxi, 28, 1-5.

[21]   Sun, H., Yu, H., Yu, S., Ren, L., Shi, P., Sun, Y. and Zhao, C. (2015) Recent Advance in Physiological Mechanisms of Peanut Drought Tolerance. Agricultural Science and Technology Communications, No. 4, 243-246.

[22]   Zhang, T., Dai, C., Wang, M., Wang, Y., Zhang, X. and Zou, X. (2018) Effects of Coronation on Photosynthetic Characteristics and Endogenous Hormone Contents of Peanut Seedlings under Drought Stress. Journal of Qingdao Agricultural University (Natural Sciences), 35, 207-212.

[23]   Sun, A., Wan, Y., Liu, F., Zhang, K. and Qin, X. (2010) Effects of Drought Stress on Photosynthetic Characteristics and Yield of Different Peanut Varieties. Shandong Agricultural Sciences, No. 10, 32-38.

[24]   Qin, L., Zhang, Y. and Guo, F. (2011) Damaging Mechanisms of Peanut (Arachis hypogaea L.) Photosystems Caused by High-Temperature and Drought under High Irradiance. Acta Ecologica Sinica, 31, 1835-1843.

[25]   Liu, M., Lv, A., Wu, J., Li, X. and Wang, Q. (2014) A Review of Impacts of Drought on Agro-Ecosystem. Chinese Agricultural Science Bulletin, 30, 165-171.

[26]   Zhang, G., Zhang, Z., Ci, D., Ding, H., Yang, J., Shi, X., Tian, J. and Dai, L. (2018) Effects of Drought and Salt Stress on Osmotic Regulator and Antioxidase Activities. Acta Agriculturae Boreali-Sinica, 33, 176-181.

[27]   Potters, G., Pasternak, T.P., Guisez, Y., Palme, K.J. and Jansen, M.A. (2007) Stress-Induced Morphogenic Responses: Growing out of Trouble? Trends in Plant Science, 12, 98-105.

[28]   Li, G., Zhang, K., Liu, F., Liu, D. and Wan, Y. (2014) Morphological and Physiological Traits of Leaf in Different Drought Resistant Peanut Cultivars. Scientia Agricultura Sinica, 47, 644-654.

[29]   Gao, Q., Jia, S., Miao, Y., Lu, X. and Li, H. (2016) Effects of Exogenous Melatonin on Nitrogen Metabolism and Osmotic Adjustment Substances of Melon Seedlings under Sub-Low Temperature. Chinese Journal of Applied Ecology, 27, 519-524.

[30]   Zhang, Z., Dai, L., Song, W., Ding, H., Ci, D., Kang, T., Ning, T. and Wan, S. (2013) Effect of Drought Stresses at Different Growth Stages on Peanut Leaf Protective Enzyme Activities and Osmoregulation Substances Content. Acta Agronomica Sinica, 39, 133-141.

[31]   Furlan, A.L., Bianucci, E., Tordable, M.C., Castro, S. and Dietz, K.J. (2014) Antioxidant Enzyme Activities and Gene Expression Patterns in Peanut Nodules during a Drought and Rehydration Cycle. Functional Plant Biology, 41, 704-713.

[32]   Zhu, J.K. (2016) Abiotic Stress Signaling and Responses in Plants. Cell, 167, 313-324.

[33]   Liu, F., Jensen, C.R., Shahanzari, A., Andersen, M.N. and Jacobsen, S.E. (2005) ABA Regulated Stomatal Control and Photosynthetic Water Use Efficiency of Potato (Solanum tuberosum L.) during Progressive Soil Drying. Plant Science, 168, 831-836.

[34]   Liu, C., Zhou, S., Zou, Y., Liang, D. and Ma, F. (2012) Changes of Endogenous Hormones Contents of Two Different Drought-Tolerant Malus Rootstocks in Response to Drought Stress. Agricultural Research in the Arid Areas, 35, 94-98.

[35]   Dramé, K.N., Clavel, D., Repellin, A., Passaquet, C. and Zuily-Fodil, Y. (2007) Water Deficit Induces Variation in Expression of Stress-Responsive Genes in Two Peanut (Arachis hypogaea L.) Cultivars with Different Tolerance to Drought. Plant Physiology and Biochemistry, 45, 236-243.

[36]   Kottapalli, K.R., Rakwal, R., Shibato, J., Burow, G., Tissue, D., Burke, J., Puppala, N., Burow, M. and Payton, P. (2009) Physiology and Proteomics of the Water-Deficit Stress Response in Three Contrasting Peanut Genotypes. Plant Cell and Environment, 32, 380-407.

[37]   Guimarães, P.M., Brasilero, A.C.M., Morgante, C.V., Martins, A.C., Pappas, G., Silva, O.B.Jr., Togawa, R., Leal-Bertioli, S.C., Araujo, A.C., Moretzsohn, M.C. and Bertioli, D.J. (2012) Global Transcriptome Analysis of Two Wild Relatives of Peanut under Drought and Fungi Infection. BMC Genomics, 13, 387.

[38]   Zhao, X.B., Yan, C.X., Zhang, H., Wang, J., Li, C.J., Xie, H.F. and Shan, S.H. (2018) Differential Expression of Transcription Factor Families in Peanut (Arachis hypogaea) under Drought Stress. Journal of Agricultural Biotechnology, 26, 1143-1154.

[39]   Pruthvi, V., Rama, N., Govind, G. and Nataraja, K.N. (2013) Expression Analysis of Drought Stress Specific Genes in Peanut (Arachis hypogaea L.). Physiology and Molecular Biology of Plants, 19, 277-281.

[40]   Ge, K., Liu, X., Li, X., Hu, B. and Li, L. (2017) Isolation of an ABA Transporter-Like 1 Gene from Arachis hypogaea That Affects ABA Import and Reduces ABA Sensitivity in Arabidopsis. Frontiers in Plant Science, 8, 1150.

[41]   Mittal, M. (2014) Conserved and Novel microRNAs Identification and Expression Study in Response to Abiotic Stresses in Peanut (Arachis hypogaea). Texas Tech University, Lubbock.

[42]   Su, L.C., Deng, B., Liu, S., Li, L.M., Hu, B., Zhong, Y.T. and Li, L. (2015) Isolation and Characterization of an Osmotic Stress and ABA Induced histone deacetylase in Arachis hypogaea. Frontiers in Plant Science, 6, 512.

[43]   Gao, C., Wang, P., Zhao, S., Zhao, C., Xia, H., Hou, L., Ju, Z., Zhang, Y., Li, C. and Wang, X. (2017) Small RNA Profiling and Degradome Analysis Reveal Regulation of microRNA in Peanut Embryogenesis and Early Pod Development. BMC Genomics, 18, 220.

[44]   Zhang, T., Hu, S., Yan, C., Li, C., Zhao, X., Wan, S. and Shan, S. (2017) Mining, Identification and Function Analysis of microRNAs and Target Genes in Peanut (Arachis hypogaea L.). Plant Physiology and Biochemistry, 111, 85-96.

[45]   Chen, Y., Su, L. and Li, L. (2018) Effect of TSA on Photosynthesis-Related Gene Expression in Different Drought-Resistant Peanut Cultivars Subjected to Drought Stress. Journal of South China Normal University (Natural Sciences), 50, 72-77.

[46]   Zhang, Z., Dai, L., Song, W., Ding, H., Chen, J. and Wan, S. (2012) Adaptability of Peanut Genotypes under Drought Stress. Chinese Journal of Oil Crop Sciences, 34, 377-383.

[47]   Liu, D., Wang, Y., Liu, F. and Zhang, K. (2013) Identification and Evaluation of Drought Resistance and Research of Leaf Drought Resistant Mechanisms in Peanut Varieties. Acta Agricultae Boreali-Sinica, 28, 206-213.

[48]   Wang, J., Li, Y., Zhang, J., Cheng, Z., Chen, S., Song, Y., Kong, H., Wang, L. and Zhang, P. (2014) Identification Index of Drought Resistance in Peanut. Acta Agriculturae Boreali-Sinica, 29, 162-168.

[49]   Zhang, J., Liu, J., Tang, F., Zang, X., Zhang, Z., Miao, L. and Xu, J. (2015) Differences in Physiological Traits of Drought Tolerance between Different Peanut Varieties. Jiangsu Agricultural Sciences, 43, 114-117.

[50]   Shen, Y., Zhiguo, E., Zhang, X., Liu, Y. and Zhen, Z. (2015) Screening and Transcriptome Analysis of Water Deficiency Tolerant Germplasms in Peanut (Arachis hypogaea). Acta Physiologiae Plantarum, 37, 103.

[51]   Liu, D., Wang, J., Li, L., Tan, H., Ma, J. and Lu, S. (2015) Responses of Different Peanut Cultivars to Drought and Waterlogging Stress and Physiological Mechanism. Acta Ecologica Sinica, 35, 3817-3823.

[52]   Liu, Y., Zhan, C., Shen, Y. and Chen, Z. (2016) Identification of Drought Tolerance in Peanut Varieties/Lines at the Germination Stage. Journal of Plant Genetic Resources, 17, 233-238.

[53]   Wang, C., Wan, Y., Liu, F. and Zhang, K. (2018) Study on Drought Resistance of Peanut Varieties at Seedling Stage under PEG6000 Osmotic Stress. Shandong Agricultural Sciences, 50, 65-71.

[54]   Raina, S.N., Rani, V., Kojima, T., Ogihara, Y., Singh, K.P. and Devarumath, R.M. (2001) RAPD and ISSR Fingerprints as Useful Genetic Markers for Analysis of Genetic Diversity, Varietal Identification, and Phylogenetic Relationships in Peanut (Arachis hypogaea) Cultivars and Wild Species. Genome, 44, 763-772.

[55]   Mallikarjuna, N. (2002) Gene Introgression from Arachis glabrata into A. hypogaea, A. duranensis and A. diogoi. Euphytica, 124, 99-105.

[56]   Wu, L., Chen, J., Hu, W. and Miao, H. (2003) A New Peanut Line 8126 Created through Hybridization with Wild Species A. cardenasii. Chinese Journal of Oil Crop Sciences, 25, 9-11.

[57]   He, L., Tang, R. and Gao, G. (2005) Molecular Evidence for Gene Introgression from Wild Species to Cultivated Varieties in Peanut. Molecular Plant Breeding, 3, 815-820.

[58]   Jiang, H., Ren, X., Huang, J., Lei, Y. and Liao, B. (2009) Genetic Variation of Fatty Acid Components in Arachis Species and Development of Interspecific Hybrids with High Oleic and Low Palmitic Acids. Acta Agronomica Sinica, 35, 25-32.

[59]   Chen, M., Chi, X., Pan, L., Chen, N., Yang, Z., Wang, T., Wang, M. and Yu, S. (2014) The Development Progress and Prospects of Peanut Breeding in China. Chinese Agricultural Science Bulletin, 30, 1-6.

[60]   Wang, C., Yang, Z., Chen, D., Zhang, J., Xu, J. and Yang, W. (2002) Production of Extra Large Podded and Small Podded Peanut Mutants Following Chemical Mutagen Treatment. Journal of Peanut Sciences, 31, 5-8.

[61]   Wang, C., Wang, X., Tang, Y., Chen, D., Cui, F. and Yu, S. (2010) High Yielding Mutants Achieved by Injecting EMS into Peanut Flower Organs. Journal of Nuclear Agricultural Sciences, 24, 239-242.

[62]   Wang, C., Tang, Y., Wang, X., Wu, Q., Sun, Q., Gong, Q., Yang, Z., Song, G. and Wang, Z. (2016) Breeding of Huayu 9610, a High-Yielding Export-Type Conventional Large-Podded Peanut Cultivar, through Chemical Mutagenesis Combined with Intersectional Hybridization. Seed, No. 3, 100-101.

[63]   Gao, A. (2016) The Traits and High-Yield Cultivation Technology for the New Processing Peanut Cultivar “Yuhanghua No. 1”. Agricultural Science and Technology Communications, No. 6, 251-252.

[64]   Li, M. (2004) Fundamental Studies on the Application of Plant Cell Engineering in Peanut (Arachis hypogaea L.) Breeding. Laiyang Agricultural College, Yantai.

[65]   Chang, S., Sun, W., Xu, G., Wang, Z., Yin, M., Han, Q., Wei, Q., Li, J. and Shu, H. (2018) Isolating Method of Plant Protoplast and Its Research Advances of Application. Molecular Plant Breeding, 16, 1271-1277.

[66]   Huang, B., Zhang, X., Miao, L., Qi, F., Shi, L., Dong, W. and Tang, F. (2015) Advances in Genetic Engineering of Peanut (Arachis hypogaea L.). Molecular Plant Breeding, 13, 228-234.

[67]   Wang, X., Yu, S., Zhang, G., Wang, H., Feng, M., Dou, X., Fan, Q. and Yu, G. (2018) Optimization of Agrobacterium tumefaciens Mediated Peanut Transformation System and Study on Drought Tolerance of AlDREB2A Peanut. Journal of China Agricultural University, 23, 26-35.

[68]   Bhatnagar-Mathur, P., Devi, M.J., Reddy, D.S., Lavanya, M., Vadez, V., Serraj, R., Yamaguchi-Shinozaki, K. and Sharma, K.K. (2007) Stress-Inducible Expression of AtDREB1A in Transgenic Peanut (Arachis hypogaea L.) Increases Transpiration Efficiency under Water-Limiting Conditions. Plant Cell Reports, 26, 2071-2082.

[69]   Vadez, V., Rao, S., Sharma, K.K., Bhatnagar-Mathur, P. and Devi, M.J. (2007) DREB1A Allows for More Water Uptake in Groundnut by a Large Modification in the Root/Shoot Ratio under Water Deficit. Journal of SAT Agricultural Research, 5, 1-5.

[70]   Devi, M.J., Bhatnagar-Mathur, P., Sharma, K.K., Serraj, R., Anwar, S.Y. and Vadez, V. (2011) Relationships between Transpiration Efficiency and Its Surrogate Traits in the rd29A:DREB1A Transgenic Lines of Groundnut. Journal of Agronomy and Crop Science, 197, 272-283.

[71]   Tan, M., Hu, B., Liu, C., Li, L. and Luo, H. (2010) Transformation AhNCED1 in Peanut (Arachis hypogaea L.). Journal of Tropical and Subtropical Botany, 18, 277-282.

[72]   Asif, M.A., Zafar, Y., Iqbal, J., Iqbal, M.M., Rashid, U., Ali, G.M., Arif, A. and Nazir, F. (2011) Enhanced Expression of AtHX1 in Transgenic Ground Nut (Arachis hypogaea L.) Improves Salt and Drought Tolerance. Molecular Biotechnology, 49, 250-256.

[73]   Qin, H., Gu, Q., Zhang, J., Sun, L., Kuppu, S., Zhang, Y., Burow, M., Payton, P., Blumwald, E. and Zhang, H. (2011) Regulated Expression of an Isopentenyltransferase Gene (IPT) in Peanut Significantly Improves Drought Tolerance and Increases Yield under Field Conditions. Plant and Cell Physiology, 52, 1904-1914.

[74]   Qin, H., Gu, Q., Kuppu, S., Paez-Valencia, J., Mendoza, M., Hou, P., Chen, J., Qiu, X., Zhu, L., Zhang, X., Auld, D., Blumwald, E., Zhang, H., Gaxiola, R. and Payton, P. (2013) Expression of the Arabidopsis Vacuolar H+-pyrophosphatase Gene AVP1 in Peanut to Improve Drought and Salt Tolerance. Plant Biotechnology Reports, 7, 345-355.

[75]   Langner, T., Kamoun, S. and Belhaj, K. (2018) CRISPR Crops: Plant Genome Editing toward Disease Resistance. Annual Review of Phytopathology, 56, 479-512.

[76]   Chen, K., Wang, Y., Zhang, R., Zhang, H. and Gao, C. (2019) CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture. Annual Review of Plant Biology, 70, 667-697.