JBM  Vol.7 No.9 , September 2019
Synthesis and PAMPA Permeability Assay of New Sulfonyl Hydrazone Derivatives
Abstract: This work describes the synthesis of seven new sulfonyl hydrazones, which were proposed from the general structure of acyl hydrazones and 2,4-dinitrosulfonamides. Sulfonyl hydrazones are a class of compounds known to exhibit a wide range of biological activity. In this sense, the study of the pharmacokinetic properties of the bioactive molecules is of extreme importance; therefore, in this article the permeability of these compounds with in vitro PAMPA assay mimetizing the permeability through the gastrointestinal tract as well as lipophilicity through miLogP was investigated. All compounds presented good permeability results; it was possible to make a structure-activity relationship with the obtained results and a comparison between the results.
Cite this paper: Souza, L. , Tizziani, T. , Sens, L. , Venzke, D. , Brighente, I. , Pizzolatti, M. and Nunes, R. (2019) Synthesis and PAMPA Permeability Assay of New Sulfonyl Hydrazone Derivatives. Journal of Biosciences and Medicines, 7, 111-120. doi: 10.4236/jbm.2019.79010.

[1]   Sens, L., de Souza, A.C.A., Pacheco, L.A., Menegatti, A.C.O., Mori, M., Mascarello, A., Nunes, R.J. and Terenzi, H. (2018) Synthetic Thiosemicarbazones as a New Class of Mycobacterium tuberculosis Protein Tyrosine Phosphatase A Inhibitors. Bioorganic & Medicinal Chemistry, 26, 5742-5750.

[2]   Sens, L., Oliveira, A.S., Mascarello, A., Brighente, I.M.C., Yunes, R.A. and Nunes, R.J. (2018) Synthesis, Antioxidant Activity, Acetylcholinesterase Inhibition and Quantum Studies of Thiosemicarbazones. Journal of the Brazilian Chemical Society, 29, 343-352.

[3]   dos Santos, L., Lima, L.A., Cechinel-Filho, V., Corrêa, R., de Campos Buzzi, F. and Nunes, R.J. (2008) Synthesis of New 1-Phenyl-3-{4-[(2E)-3-Phenylprop-2-Enoyl] Phenyl}-Thiourea and Urea Derivatives with Anti-Nociceptive Activity. Bioorganic & Medicinal Chemistry, 16, 8526-8534.

[4]   Drawanz, B.B., Ribeiro, C.S., Masteloto, H.G., Neuenfeldt, P.D., Pereira, C.M.P., Siqueira, G.M. and Cunico, W. (2014) Sonochemistry: A Good, Fast and Clean Method to Promote the Synthesis of 5-Arylidene-2,4-Thiazolidinediones. Ultrasonics Sonochemistry, 21, 1615-1617.

[5]   Martins, P.G.A., Menegatti, A.C.O., Delatorre, L.D.C., Oliveira, K.N., Guido, R.V.C., Andricopulo, A.D., Vernal, J., Yunes, R.A., Nunes, R.J. and Terenzi, H. (2013) Synthetic Chalcones and Sulfonamides as New Classes of Yersinia Enterocolitica YopH Tyrosine Phosphatase Inhibitors. European Journal of Medicinal Chemistry, 64, 35-41.

[6]   Frederico, M.J.S., Castro, A.J.G., Pinto, V.A.M., Ramos, C.D.F., Monteiro, F.B.F., Mascarello, A., Nunes, R.J. and Silva, F.R.M.B. (2018) Mechanism of Action of Camphoryl-Benzene Sulfonamide Derivative on Glucose Uptake in Adipose Tissue. Journal of Cellular Biochemistry, 119, 4408-4419.

[7]   Weinstein, L., Madoff, M.A. and Samet, C.M. (1960) The Sulfonamides. The New England Journal of Medicine, 263, 900-907.

[8]   Aslan, H.G., Özcan, S. and Karacan, N. (2012) The Antibacterial Activity of Some Sulfonamides and Sulfonyl Hydrazones, and 2D-QSAR Study of a Series of Sulfonyl Hydrazones. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 98, 329-336.

[9]   Oliveira, A., Canzian Llanes, L., Brighente, I.I., Nunes, R., Yunes, R., Máximo Junior, N., Baumgart, A., Aust, A. and Cruz, A. (2016) New Sulfonamides Derived from Carvacrol: Compounds with High Antibacterial Activity against Resistant Staphylococcus aureus Strains. Journal of Biosciences and Medicines, 4, 105-114.

[10]   Patani, G.A. and LaVoie, E.J. (1996) Bioisosterism: A Rational Approach in Drug Design. Chemical Reviews, 96, 3147-3176.

[11]   Lidia Moreira, L. and Eliezer, J.B. (2005) Bioisosterism: A Useful Strategy for Molecular Modification and Drug Design. Current Medicinal Chemistry, 12 , 23-49.

[12]   Jádna Silva Frederico, M., Castro, A., Mascarello, A., Pires Mendes, C., Kappel, V., Stumpf, T., Leal, P., Nunes, R., Yunes, R. and Silva, F. (2012) Acylhydrazones Contribute to Serum Glucose Homeostasis Through Dual Physiological Targets. Current Topics in Medicinal Chemistry, 12, 2049-2058.

[13]   Salum, L.B., Mascarello, A., Canevarolo, R.R., Altei, W.F., Laranjeira, A.B.A., Neuenfeldt, P.D., Stumpf, T.R., Chiaradia-Delatorre, L.D., Vollmer, L.L., Daghestani, H.N., de Souza Melo, C.P., Silveira, A.B., Leal, P.C., Frederico, M.J.S., do Nascimento, L.F., Santos, A.R.S., Andricopulo, A.D., Day, B.W., Yunes, R.A., Vogt, A., Yunes, J.A. and Nunes, R.J. (2015) N-(1’-naphthyl)-3,4,5-Trimethoxybenzohydrazide as Microtubule Destabilizer: Synthesis, Cytotoxicity, Inhibition of Cell Migration and in Vivo Activity against Acute Lymphoblastic Leukemia. European Journal of Medicinal Chemistry, 96, 504-518.

[14]   Manne, R., Miller, M., Duthie, A., Guedes da Silva, M.F.C., Tshuva, E.Y. and Basu Baul, T.S. (2019) Cytotoxic Homoleptic Ti(IV) Compounds of ONO-Type Ligands: Synthesis, Structures and Anti-Cancer Activity. Dalton Transactions, 48, 304-314.

[15]   Jacomini, A.P., Silva, M.J.V., Poletto, J., Ribeiro, G.M., Yokoyama, J.T.C., Bidóia, D.L., Paula, F.R., Nakamura, C.V., Sarragiotto, M.H. and Rosa, F.A. (2018) Potential Antileishmanial Activity of 4-N-Acylhydrazone Pyrazolo[3,4-d]pyridazin-7-ones: Synthesis, In Vitro Biological Evaluations and Computational Studies.. Journal of the Brazilian Chemical Society, 29, 2657-2668.

[16]   Segretti, N.D., Serafim, R.A.M., Segretti, M.C.F., Miyata, M., Coelho, F.R., Augusto, O. and Ferreira, E.I. (2016) New Antibacterial Agents: Hybrid Bioisoster Derivatives as Potential E. coli FabH Inhibitors. Bioorganic & Medicinal Chemistry Letters, 26, 3988-3993.

[17]   Balaban GÜndÜzalp, A., Özmen.Özdemir, Ü., Cevrimli, B.B., Mamas, S. and Çete, S. (2014) Synthesis, Characterization, Electrochemical Behavior, and Antimicrobial Activities of Aromatic/Heteroaromatic Sulfonylhydrazone Derivatives. Medicinal Chemistry Research, 23, 3255-3268.

[18]   Thais Batista, F., Ricardo Alexandre de, A., Rosania, Y., Sarah Fernandes, T., Gustavo Henrique Goulart, T., Jose Alexandre Marzagao, B., Adilson Kleber, F. and Roberto, P.-F. (2018) Arylsulfonylhydrazone Induced Apoptosis in MDA-MB-231 Breast Cancer Cells. Letters in Drug Design & Discovery, 15, 1288-1298.

[19]   Silvia, E.-J., Antonio, M.-H., Rogelio, R.-O., Edith, D.-G., Benjamín, N.-T., Eduardo, A.G.O., Nelilma, C.R., Lidia, M.L., Isidro, P. and Gildardo, R. (2017) Synthesis, Biological Evaluation and Molecular Docking of New Benzenesulfonylhydrazone as Potential anti-Trypanosoma cruzi Agents. Medicinal Chemistry, 13, 149-158.

[20]   Fernandes, T.B., Cunha, M.R., Sakata, R.P., Candido, T.M., Baby, A.R., Tavares, M.T., Barbosa, E.G., Almeida, W.P. and Parise-Filho, R. (2017) Synthesis, Molecular Modeling, and Evaluation of Novel Sulfonylhydrazones as Acetylcholinesterase Inhibitors for Alzheimer's Disease. Archiv der Pharmazie, 350, Article ID: 1700163.

[21]   Cárdenas, P.A., Kratz, J.M., Hernández, A., Costa, G.M., Ospina, L.F., Baena, Y., Simões, C.M.O., Jimenez-Kairuz, Á. and Aragon, M. (2017) In Vitro Intestinal Permeability Studies, Pharmacokinetics and Tissue Distribution of 6-Methylcoumarin after Oral and Intraperitoneal Administration in Wistar Rats. Brazilian Journal of Pharmaceutical Sciences, 53, e16081.

[22]   Dreassi, E., Zizzari, A., Falchi, F., Schenone, S., Santucci, A., Maga, G. and Botta, M. (2009) Determination of Permeability and Lipophilicity of Pyrazolo-Pyrimidine Tyrosine Kinase Inhibitors and Correlation with Biological Data. European Journal of Medicinal Chemistry, 44, 3712-3717.

[23]   Venzke, D., Carvalho, F.K., Ruani, A.P., Oliveira, A.S., Brighente, I.M.C., Micke, G.A., Barison, A. and Pizzolatti, M.G. (2013) PAMPA Permeability, Acetylcholinesterase Inhibition and Antioxidant Activity of Pyranoisoflavones from Polygala molluginifolia (Polygalaceae). Journal of the Brazilian Chemical Society, 24, 1991-1997.

[24]   Nakabayashi, T., Gotoh, Y., Kamada, N., Fujioka, M., Ishihara, T., Hirabayashi, A. and Sato, H. (2013) Pharmacokinetics of the Amidine Prodrug of a Novel Oral Anticoagulant Factor VIIa Inhibitor (AS1924269-00) in Rats. Die Pharmazie, 68, 349-354.

[25]   Curatolo, W. (1998) Physical Chemical Properties of Oral Drug Candidates in the Discovery and Exploratory Development Settings. Pharmaceutical Science & Technology Today, 1, 387-393.

[26]   Shin, H.K., Kang, Y.-M. and No, K.T. (2017) Predicting ADME properties of chemicals. In: Leszczynski, J., Kaczmarek-Kedziera, A., Puzyn, T., Papadopoulos, M., Reis, H. and Shukla, M., Eds., Handbook of Computational Chemistry, Springer, Cham, 2265-2301.

[27]   Cheng, K.-C., Korfmacher, W.A., White, R.E. and Njoroge, F.G. (2007) Lead Optimization in Discovery Drug Metabolism and Pharmacokinetics/Case Study: The Hepatitis C Virus (HCV) Protease Inhibitor SCH 503034. Perspectives in Medicinal Chemistry, 1.

[28]   Preface. Kerns, E.H. and Di, L. (2008) Drug-Like Properties: Concepts, Structure Design, and Methods: From ADME to Toxicity Optimization. Academic Press, San Diego, CA, 18-19.

[29]   Reis, J.M., Sinko, B. and Serra, C.H.R. (2010) Parallel Artificial Membrane Permeability Assay (PAMPA)-Is It Better than Caco-2 for Human Passive Permeability Prediction? Mini-Reviews in Medicinal Chemistry, 10, 1071-1076.

[30]   Kansy, M., Senner, F. and Gubernator, K. (1998) Physicochemical High Throughput Screening: Parallel Artificial Membrane Permeation Assay in the Description of Passive Absorption Processes. Journal of Medicinal Chemistry, 41, 1007-1010.

[31]   Velicky, M., Tam, K.Y. and Dryfe, R.A. (2012) Permeation of a Fully Ionized Species Across a Polarized Supported Liquid Membrane. Analytical Chemistry, 84, 2541-2547.

[32]   Ottaviani, G., Martel, S. and Carrupt, P.A. (2006) Parallel Artificial Membrane Permeability Assay: A New Membrane for the Fast Prediction of Passive Human Skin Permeability. Journal of Medicinal Chemistry, 49, 3948-3954.

[33]   Sun, M., Dai, W. and Liu, D.Q. (2008) Fragmentation of Aromatic Sulfonamides in Electrospray Ionization Mass Spectrometry: Elimination of SO2 via Rearrangement. Journal of Mass Spectrometry, 43, 383-393.