Back
 AJPS  Vol.10 No.9 , September 2019
Effect of Substrates on the Mycorrhization and Growth of Saba senegalensis under Semi-Controlled Conditions
Abstract:

Saba senegalensis is a wild edible fruit plant species with a high economic potential which can be used to fight food insecurity in rural areas and to reduce poverty. Domestication programs are being carried out to boost production. However, no studies have been done to determine the optimal soil properties for growing S. senegalensis. This study was carried out to determine the effects of the physical and chemical properties of different substrates on the mycorrhization and growth of S. senegalensis under semi-controlled conditions. S. senegalensis seeds were grown for 4 months in the nursery using five substrates: S1 (1/2 sand + 1/2 potting soil), S2 (1/3 sand + 2/3 potting soil), S3 (2/3 sand + 1/3 potting soil), S4 (potting soil) and S5 (sand). The intensity of mycorrhization was highest for plants grown on substrates with a lowest clay, silt, and nutrient content S3 (29.5%) and S5 (23.5%) respectively. Substrates with much higher clay and silt content stimulated better the growth of S. senegalensis than substrates with lower silt clay and nutrient content. In the context of domestication, the quality of the substrates could be used to stimulate the mycorrhization and the growth of S. senegalensis and thus quickly produce vigorous plants.

Cite this paper: Diouf, P. , Diedhiou, S. , Fall, D. , Ngom, D. , Diallo, M. and Ndoye, I. (2019) Effect of Substrates on the Mycorrhization and Growth of Saba senegalensis under Semi-Controlled Conditions. American Journal of Plant Sciences, 10, 1612-1622. doi: 10.4236/ajps.2019.109114.
References

[1]   Leeuwenberg, A.J.M. and van Dilst, F.J.H. (1989) Saba (Pichon) Pichon, Series of Revisions of Apocynaceae XXVII. Bulletin du Jardin Botanique National de Belgique, 59, 189-206.
https://doi.org/10.2307/3668165

[2]   Traore, A. (2000) Reproduction and Development of Saba senegalensis (A. DC) Pichon au Sénégal. 100 p.
http://agris.fao.org/agris-search/search.do?recordID=XF2015015548

[3]   Berhaut, J. (1967) Flora of Senegal. 2nd Edition, Claireafrique, Dakar, 485 p.

[4]   Bruneton, J. (1993) Pharmacognosie, Phytochimie, Plantes Médicinales. 2nd Edition, Tec and Doc., Lavoisier, Paris, 915 p.

[5]   N’Diaye, M., Fodé, B.K. and Philippe, M. (2003) Main Harvest Fruits Consumed and Marketed in Guinea. Fruits, 58, 99-116.
https://doi.org/10.1051/fruits:2002040

[6]   Ndiour, P.A. (1996) Role and Importance of Forest Fruits from Fallow in the Formation of Household Incomes in the Department of Bignona. 78 p.
https://infodoc.agroparistech.fr/index.php?lvl=author_see&id=66114

[7]   Lamien, N., Loada/Kabore, A.K. and Tamini, Z. (2007) Grafting of Four Local Fruit Trees: Tamarindus indica L., Saba senegalensis (A. DC.) Pichon, Lannea microcarpa Engl. and K. Krause and Sclerocarya birrea (A. Rich.) Hochst in Burkina Faso.
http://hdl.handle.net/10625/41646

[8]   Smith, S.E. and Read, D.J. (2008) Mycorrhizal Symbiosis. 3rd Edition, Academic Press, Cambridge.
https://doi.org/10.1016/B978-012652840-4/50001-2

[9]   Read, D.J. (1991) Mycorrhiza in Ecosystems. Experientia, 47, 376-391.
https://doi.org/10.1007/BF01972080

[10]   Gobat, J.M., Aragno, M. and Matthey, W. (2003) The Living Soil. 2nd Edition, Presses Polytechniques Universitaires Romandes, Lausanne, 568 p.

[11]   Sanon, K.B., Ba, A.M. and Dexheimer, J. (1997) Mycorrhizal Status of Some Fungi Fruiting beneath Indigenous Trees in Burkina Faso. Forest Ecology and Management, 98, 61-69.
https://doi.org/10.1016/S0378-1127(97)00089-3

[12]   Onguene, N.A. (2000) Diversity and Dynamics of Mycorrhizal Associations in Tropical Rain Forests with Different Disturbance Regimes in South Cameroon. Tropenbos Cameroon Series 3, Tropenbos International, Wageningen, 167 p.

[13]   Yorou, S.N., Koljalg, U., Sinsin, B. and Agerer, R. (2007) Studies in African Thelephoroid Fungi: I. Tomentella capitata and Tomentella brunneocystidia, Two News Species from Benin (West Africa) with Capitate Cystidia. Mycological Progress, 6, 7-18.
https://doi.org/10.1007/s11557-006-0519-4

[14]   Subramanian, K.S., Charest, C., Dwyer, L.M. and Hamilton, R.I. (1995) Arbuscular Mycorrhizas and Water Relations in Maize under Drought Stress at Tasselling. New Phytologist, 129, 643-650.
https://doi.org/10.1111/j.1469-8137.1995.tb03033.x

[15]   Dehne, H.W. (1982) Interaction between Vesicular Arbuscular Mycorrhizal Fungi and Plant Pathogens. Phytopathology, 72, 1115-1119.

[16]   Duponnois, R., Plenchette, C., Thioulouse, J. and Cadet, P. (2001) The Mycorrhizal Soil Infectivity and Arbuscular Mycorrhizal Fungal Spore Communities in Soils of Different Aged Fallows in Senegal. Applied Soil Ecology, 17, 239-251.
https://doi.org/10.1016/S0929-1393(01)00132-9

[17]   Duponnois, R., Ba, A.M., Prin, Y., Baudoin, E., Galiana, A. and Dreyfus, B. (2010) Mycorrhizal Fungi: A Major Component in the Biological Processes Governing the Stability and Productivity of Tropical Forest Ecosystems. In: Dia, A., Duponnois, R. and Wade, A., Eds., Le projet majeur africain de la Grande Muraille Verte: Concepts et mise en oeuvre, IRD, Marseille, 421-440. http://www.documentation.ird.fr/hor/fdi:010050330

[18]   Ba, A.M., Plenchette, C., Danthu, P., Duponnois, R. and Guissou, T. (2000) Functional Compatibility of Two Arbuscular Mycorrhizae with Thirteen Fruit Trees in Senegal. Agroforestry Systems, 50, 95-105.
https://doi.org/10.1023/A:1006482904452

[19]   Diouf, P., Diedhiou, S., Goudiaby, A.O.K., Ndoye, I. and Koita, B. (2019) Morphological Variability of Saba Senegalensis (A. DC.) Pichon en Casamance (Sénégal). European Scientific Journal, 15, 500-517.
https://doi.org/10.19044/esj.2019.v15n9p500

[20]   Valentin, C. and Bresson, L.M. (1992) Morphology, Genesis and Classification of Surface Crusts in Loamy and Sandy Soils. Geoderma, 55, 225-245.
https://doi.org/10.1016/0016-7061(92)90085-L

[21]   Philips, J.M. and Hayman, D.S. (1970) Improved Procedure for Clearing Roots and Staining Parasitic and Vesicular-Arbuscular Mycorrhizal Fungi for Rapid Assessment of Infection. Transactions of the British Mycological Society, 55, 158-161.
https://doi.org/10.1016/S0007-1536(70)80110-3

[22]   Wu, Q.S., Xia, R.X. and Zou, Y.N. (2008) Improved Soil Structure and Citrus Growth after Inoculation with the Arbuscular Mycorrhizal Fungi under Drought Stress. European Journal of Soil Biology, 44, 122-128.
https://doi.org/10.1016/j.ejsobi.2007.10.001

[23]   Ba, A., Guissou, T., Duponnois, R., Plenchette, C., Sacko, O., Sidibe, D., Sylla, K. and Windou, B. (2001) Controlled Mycorrhization and Phosphate Fertilization: Applications to the Domestication of Jujube. Fruits, 56, 261-269.
https://doi.org/10.1051/fruits:2001128

[24]   Hayman, D.S. (1983) The Physiology of Vesicular-Arbuscular Endomycorrhizal Symbiosis. Canadian Journal of Botany, 61, 944-963.
https://doi.org/10.1139/b83-105

[25]   Mosse, B. (1986) Mycorrhiza in a Sustainable Agriculture. Biological Agriculture and Horticulture, 3, 191-209.
https://doi.org/10.1080/01448765.1986.9754471

[26]   Brundrett, M. (1991) Mycorrhizas in Natural Ecosystems. Advances in Ecological Research, 21, 171-313.

[27]   Chen, W., Li, J., Zhu, H., Xu, P., Chen, J. and Yao, Q. (2017) The Differential and Interactive Effects of Arbuscular Mycorrhizal Fungus and Phosphorus on the Lateral Root Formation in Poncirus trifoliata (L.). Scientia Horticulturae, 217, 258-265.
https://doi.org/10.1016/j.scienta.2017.02.008

[28]   Pierart, A. (2012) Interactions entre mycorhization, nutrition en phosphore et adaptation de la plante à la toxicité du nickel sur substrat ultramafique Vers une optimisation de la Mycorhization d Alphitonia neocaledonica. Sciences agricoles dumas-00745807.

[29]   Garbaye, J., Lainez, J. and Le Tacon, F. (1983) Survival, Growth and Mycorrhization of Beech Plants Grown on Fertilized Peat. Revue Forestière Francaise, 1, 27-34.
https://doi.org/10.4267/2042/21965

[30]   Schreiner, R.P. and Linderman, R.G. (2005) Mycorrhizal Colonization in Dryland Vineyards of the Willamette Valley, Oregon. Small Fruits Review, 4, 41-55.
https://doi.org/10.1300/J301v04n03_04

[31]   Schreiner, R.P. (2010) Foliar Sprays Containing Phosphorus (P) Have Minimal Impact on “Pinot Noir” Growth and P Status, Mycorrhizal Colonization, and Fruit Quality. HortScience, 45, 815-821.
https://doi.org/10.21273/HORTSCI.45.5.815

[32]   Laminou Manzo, O., Ibrahim, D., Campanella, B. and Paul, R. (2009) Effect of Substrate Mycorrhizal Inoculation on the Growth and Tolerance of Hydric Stress of Five Sand Fixing-Species: Acacia raddiana Savi; Acacia nilotica (L.) Willd. Ex Del. var. adansonii; Acacia senegal (L.) Willd; Prosopis chilensis Stunz. and Bauhinia rufescens Lam. Geo-Eco-Trop, 33, 115-124.
http://hdl.handle.net/2268/85151

[33]   Jiménez-Moreno, M.J., del Carmen Moreno-Márquez, M., Moreno-Alías, I., Rapoport, H. and Fernández-Escobar, R. (2018) Interaction between Mycorrhization with Glomus intraradices and Phosphorus in Nursery Olive Plants. Scientia Horticulturae, 233, 249-255.
https://doi.org/10.1016/j.scienta.2018.01.057

[34]   Gaston, S., Dahiratou, I.D., Moussa, B. and Fatondji, D. (2017) Impact of Previous Legumes on Millet Mycorrhization and Yields in Sandy Soil of West African Sahel. Journal of Soil Science and Environmental Management, 8, 164-189.
https://doi.org/10.5897/JSSEM2017.0647

[35]   Diagne, O. and Ingleby, K. (2003) Ecology of Arbuscular Mycorrhizal Fungi Infectious to Acacia raddiana. In: Un arbre au desert, IRD Editions, Paris, 205-228.

[36]   Hetrick, B.D.A., Wilson, G.W.T. and Cox, T.S. (1992) Mycorrhizal Dependency of Modern Wheat Varieties, Landraces and Ancestors. Canadian Journal of Botany, 70, 2032-2040.
https://doi.org/10.1139/b92-253

 
 
Top