Back
 JAMP  Vol.7 No.9 , September 2019
Momentum Distribution Functions in Quark-Gluon Plasma
Abstract: Based on the constituent quasiparticle model of the quark-gluon plasma (QGP), the Wigner function is presented in the form of a color path integral. The Monte Carlo calculations of the quark and gluon densities, pair correlation functions and the momentum distribution functions for strongly coupled QGP plasma in thermal equilibrium at barion chemical potential equal to zero have been carried out. Analysis of the pair correlation functions points out on arising glueballs and related gluon bound states. Comparison results between the momentum distribution functions and Maxwell-Boltzmann distributions show the significant influence of the interparticle interaction on the high energy asymptotics of the momentum distribution functions resulting in the appearance of quantum “tails”.
Cite this paper: Filinov, V. and Larkin, A. (2019) Momentum Distribution Functions in Quark-Gluon Plasma. Journal of Applied Mathematics and Physics, 7, 1997-2014. doi: 10.4236/jamp.2019.79137.
References

[1]   Shuryak, E.V. (2009) Physics of Strongly Coupled Quark-Gluon Plasma. Progress in Particle and Nuclear Physics, 62, 48.

[2]   Shen, C. and Heinz, U. (2012) Collision Energy Dependence of Viscous Hydrodynamic Flow in Relativistic Heavy-Ion Collisions. Physical Review, 85, Article ID: 054902.
https://doi.org/10.1103/PhysRevC.85.054902

[3]   Fodor, Z. and Katz, S.D. (2009) The Phase Diagram of Quantum Chromodynamics.

[4]   Borsanyi, S., Endrodi, G., Fodor, Z., Jakovac, A., Katz, S.D., Krieg, S., Ratti, C. and Szabo, K.K. (2010) The QCD Equation of State with Dynamical Quarks. Journal of High Energy Physics, 2010, 77.
https://doi.org/10.1007/JHEP11(2010)077

[5]   Litim, D.F. and Manuel, C. (1999) Mean Field Dynamics in Non-Abelian Plasmas from Classical Transport Theory. Physical Review Letters, 82, 4981.
https://doi.org/10.1103/PhysRevLett.82.4981

[6]   Gelman, B.A., Shuryak, E.V. and Zahed, I. (2006) Classical Strongly Coupled Quark-Gluon Plasma. II. Screening and Equation of State. Physical Review C, 74, Article ID: 044908.
https://doi.org/10.1103/PhysRevC.74.044909

[7]   Ebeling, W., Fortov, V. and Filinov, V. (2017) Quantum Statistics of Dense Gases and Nonideal Plasmas. Springer, Berlin.
https://doi.org/10.1007/978-3-319-66637-2

[8]   Petreczky, P., Karsch, F., Laermann, E., Stickan, S. and Wetzorke, I. (2002) Temporal Quark and Gluon Propagators: Measuring the Quasiparticle Masses. Nuclear Physics B—Proceedings Supplements, 109, 513-515.
https://doi.org/10.1016/S0920-5632(01)01764-9

[9]   Liao, J. and Shuryak, E.V. (2009) What Do Lattice Baryonic Susceptibilities Tell Us about Quarks, Diquarks and Baryons at T > Tc? Physical Review D, 73, Article ID: 014509.

[10]   Karsch, F. and Kitazawa, M. (2009) Quark Propagator at Finite Temperature and Finite Momentum in Quenched Lattice QCD. Physical Review D, 80, Article ID: 056001.
https://doi.org/10.1103/PhysRevD.80.056001

[11]   Wong, S.K. (1970) Field and Particle Equations for the Classical Yang-Mills Field and Particles with Isotopic Spin. Il Nuovo Cimento A, 65, 689-694.
https://doi.org/10.1007/BF02892134

[12]   Filinov, V.S., Ivanov, Yu.B., Bonitz, M., Fortov, V.E. and Levashov, P.R. (2013) Color Path-Integral Montecarlo Simulations of Quark-Gluon Plasma: Thermodynamic and Transport Properties. Physical Review C, 87, Article ID: 035207.
https://doi.org/10.1103/PhysRevC.87.035207

[13]   Wigner, E.P. (1932) On the Quantum Correction for Thermodynamic Equilibrium. Physical Review, 40, 749.
https://doi.org/10.1103/PhysRev.40.749

[14]   Tatarskii, V. (1983) The Wigner Representation of Quantum Mechanics. Soviet Physics Uspekhi, 26, 311.
https://doi.org/10.1070/PU1983v026n04ABEH004345

[15]   Weinbub, J. and Ferry, D.K. (2018) Recent Advances in Wigner Function Approaches. Applied Physics Reviews, 5, Article ID: 041104.
https://doi.org/10.1063/1.5046663

[16]   Zavialov, O.I. and Malokostov, A.M. (1999) Wigner Function for Free Relativistic Particles. Theoretical and Mathematical Physics, 119, 448-453.
https://doi.org/10.1007/BF02557343

[17]   Zavialov, O.I. (2001) Nonlinear Representations of the Lorentz Group in Quantum Field Theory. Theoretical and Mathematical Physics, 127, 471-482.
https://doi.org/10.1023/A:1010311924883

[18]   Larkin, A.S. and Filinov, V.S. (2014) Wigner’s Pseudo-Particle Relativistic Dynamics in External Potential Field. Physics Letters A, 378, 1876-1882.
https://doi.org/10.1016/j.physleta.2014.04.051

[19]   Feynman, R.P. and Hibbs, A.R. (1965) Quantum Mechanics and Path Integrals. McGraw-Hill, New York.

[20]   Larkin, A.S., Filinov, V.S. and Fortov, V.E. (2016) Path Integral Representation of the Wigner Function in Canonical Ensemble. Contributions to Plasma Physics, 56, 187-196.
https://doi.org/10.1002/ctpp.201500078

[21]   Larkin, A.S. and Filinov, V.S. (2017) Phase Space Path Integral Representation for Wigner Function. Journal of Applied Mathematics and Physics, 5, 392-411.
https://doi.org/10.4236/jamp.2017.52035

[22]   Wiener, N. (1923) Differential-Space. Journal of Mathematical Physics, 2, 131-174.
https://doi.org/10.1002/sapm192321131

[23]   Zamalin, V.M. and Norman, G.E. (1973) The Monte-Carlo Method in Feynman's Formulation of Quantum Statistics. USSR Computational Mathematics and Mathematical Physics, 13, 169.
https://doi.org/10.1016/0041-5553(73)90139-0

[24]   Zamalin, V.M., Norman, G.E. and Filinov, V.S. (1977) The Monte-Carlo Method in Statistical Thermodynamics. McGraw-Hill, Nauka.

[25]   Larkin, A.S., Filinov, V.S. and Fortov, V.E. (2018) Peculiarities of Momentum Distribution Functions of Strongly Correlated Charged Fermions. Journal of Physics A: Mathematical and Theoretical, 51, Article ID: 035002.
https://doi.org/10.1088/1751-8121/aa98d0

[26]   Yukalov, V.I. and Yukalova, E.P. (1997) Multichannel Approach to Clustering Matter. Physica A, 243, 382-414.
https://doi.org/10.1016/S0378-4371(97)00268-9

[27]   Shuryak, E.V. and Zahed, I. (2004) Toward a Theory of Binary Bound States in the Quark-Gluon Plasma. Physical Review C, 70, Article ID: 021901.
https://doi.org/10.1103/PhysRevD.70.054507

[28]   Asakawa, M., Hatsuda, T. and Nakahara, Y. (2001) Maximum Entropy Analysis of the Spectral Functions in Lattice QCD. Nuclear Physics, 46, 459.

[29]   Datta, S., Karsch, F., Petreczky, P. and Wetzorke, I. (2004) Behavior of Charmonium Systems after Deconfinement. Physical Review D, 69, Article ID: 094507.
https://doi.org/10.1103/PhysRevD.69.094507

[30]   Galitskii, V.M. and Yakimets, V.V. (1966) Particle Relaxation in a Maxwell Gas. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, 51, 957.

[31]   Starostin, A.N., Grjaznov, V.K. and Petrushevich, Yu.V. (2017) Development of the Theory of Momentum Distribution of Particles with Regard to Quantum Phenomena Page. Journal of Experimental and Theoretical Physics, 125, 940-947.

 
 
Top