Back
 MSA  Vol.10 No.9 , September 2019
Comparison of Textural Characteristics of Ceria Solids Prepared via Triton X Reverse Micelles and in Situ Synthesized Ce(OiPr)4 and Ce(OiPr) 3 Precursors
Abstract: The textural and surface properties of ceria solids prepared in the presence of Triton X reverse micelles and using in situ synthesized Ce(OiPr)4 and Ce(OiPr)3 precursors are compared with one another to investigate the effect of the two different precursors on the ceria particles formation. A wide spectrum of analytical methods such as UV-Vis absorption, isothermal N2 adsorption/desorption, powder XRD, FTIR, ATR-FTIR, DRUV-Vis solid state, TGA and DSC has been employed for the characterization of the solids. Generally, the ceria solids obtained when the Ce(OiPr)4 precursor is used to possess better textural and surface properties, and more defects (e.g. oxygen vacancies) in their crystal structure.
Cite this paper: Paschalidou, P. and Theocharis, C. (2019) Comparison of Textural Characteristics of Ceria Solids Prepared via Triton X Reverse Micelles and in Situ Synthesized Ce(OiPr)4 and Ce(OiPr) 3 Precursors. Materials Sciences and Applications, 10, 585-599. doi: 10.4236/msa.2019.109042.
References

[1]   Lotfi, R. and Khorrami, S.A. (2016) Calcination Temperature and Molar Ratio Effects of Nanosized CeO2 and La2O3/γ-Al2O3 Synthesized within Reverse Micelles of Surfactant/Cyclohexane/Water Microemulsion. Journal of Ceramic Processing Research, 17, 942-946.

[2]   Ledwa, K.A. and Kepinski, L. (2017) Dispersion of Ceria Nanoparticles on γ-Alumina Surface Functionalized Using Long Chain Carboxylic Acids. Applied Surface Science, 400, 212-219.
https://doi.org/10.1016/j.apsusc.2016.12.127

[3]   Sun, C., Li, H. and Chen, L. (2012) Nanostructured Ceria-Based Materials: Synthesis, Properties, and Applications. Energy & Environmental Science, 5, 8475-8505.
https://doi.org/10.1039/c2ee22310d

[4]   Yuan, Q., Duan, H.H., Li, L.L., Sun, L.D., Zhang, Y.W. and Yan, C.H. (2009) Controlled Synthesis and Assembly of Ceria-Based Nanomaterials. Journal of Colloid and Interface Science, 335, 151-167.
https://doi.org/10.1016/j.jcis.2009.04.007

[5]   Chowdhury, S. and Lin, K.S. (2011) Synthesis and Characterization of 1D Ceria Nanomaterials for CO Oxidation and Steam Reforming of Methanol. Journal of Nanomaterials, 2011, Article ID: 157690.
https://doi.org/10.1155/2011/157690

[6]   Supakanapitak, S., Boonamnuayvitaya, V. and Jarudilokkul, S. (2012) Synthesis of Nanocrystalline CeO2 Particles by Different Emulsion Methods. Materials Characterization, 67, 83-92.
https://doi.org/10.1016/j.matchar.2012.02.018

[7]   Liu, L., Cao, Y., Sun, W., Yao, Z., Liu, B., Gao, F. and Dong, L. (2011) Morphology and Nanosize Effects of Ceria from Different Precursors on the Activity for NO Reduction. Catalysis Today, 175, 48-54.
https://doi.org/10.1016/j.cattod.2011.04.018

[8]   He, L.Y., et al. (2015) Recent Advances of Cerium Oxide Nanoparticles in Synthesis, Luminescence and Biomedical Studies: A Review. Journal of Rare Earths, 33, 791-799.
https://doi.org/10.1016/S1002-0721(14)60486-5

[9]   Bumajdad, A., Eastoe, J. and Mathew, A. (2009) Cerium Oxide Nanoparticles Prepared in Self-Assembled Systems. Advances in Colloid and Interface Science, 147-148, 56-66.
https://doi.org/10.1016/j.cis.2008.10.004

[10]   Paul, B.K. and Moulik, S.P. (2001) Uses and Applications of Microemulsions. Current Science, 80, 990-1001.

[11]   Eastoe, J., Hollamby, M.J. and Hudson, L. (2006) Recent Advances in Nanoparticle Synthesis with Reversed Micelles. Advances in Colloid and Interface Science, 128-130, 5-15.
https://doi.org/10.1016/j.cis.2006.11.009

[12]   Paschalidou, P., Liatsou, I., Pashalidis, I. and Theocharis, C.R. (2017) Effect of Surface and Textural Characteristics on Uranium Adsorption by Nanoporous Titania. Journal of Radioanalytical and Nuclear Chemistry, 314, 1141-1147.
https://doi.org/10.1007/s10967-017-5475-8

[13]   Paschalidou, P. and Theocharis, C.R. (2018) Tuning the Porosity and Surface Characteristics of Nanoporous Titania Using Non-Ionic Surfactant Reverse Micelles. RSC Advances, 8, 29890-29898.
https://doi.org/10.1039/C8RA05495A

[14]   Paschalidou, P., Liatsou, I., Pashalidis, I. and Theocharis, C.R. (2018) The Effect of Surface Properties on the Uranium Adsorption by Mesoporous Ceria. Journal of Radioanalytical and Nuclear Chemistry, 318, 2193-2197.
https://doi.org/10.1007/s10967-018-6195-4

[15]   Paschalidou, P. and Theocharis, C.R. (2019) Surface Properties of Ceria Synthesised Using Triton-X Based Reverse Microemulsions. RSC Advances, 9, 7025-7031.
https://doi.org/10.1039/C8RA08947G

[16]   Khadzhiev, S.N., Kadiev, K.M., Yampolskaya, G.P. and Kadieva, M.K. (2013) Trends in the Synthesis of Metal Oxide Nanoparticles through Reverse Microemulsions in Hydrocarbon Media. Advances in Colloid and Interface Science, 197-198, 132-145.
https://doi.org/10.1016/j.cis.2013.05.003

[17]   Tanev, P.T. and Pinnavaia, T.J. (1995) A Neutral Templating Route to Mesoporous Molecular Sieves. Science, 267, 865-867.
https://doi.org/10.1126/science.267.5199.865

[18]   Jaiswal, S., Mondal, R., Paul, D. and Mukherjee, S. (2016) Investigating the Micellization of the Triton-X Surfactants: A Non-Invasive Fluorometric and Calorimetric Approach. Chemical Physics Letters, 646, 18-24.
https://doi.org/10.1016/j.cplett.2015.12.051

[19]   Johnson, M. (2013) Detergents: Triton X-100, Tween-20, and More. Materials and Methods, 3, 163.
https://doi.org/10.13070/mm.en.3.163

[20]   Scardi, P., Leoni, M., Müller, M. and Di Maggio, R. (2010) In Situ Size-Strain Analysis of Nanocrystalline Ceria Growth. Materials Science and Engineering: A, 528, 77-82.
https://doi.org/10.1016/j.msea.2010.03.077

[21]   Niederberger, M., Garnweitner, G., Ba, J., Polleux, J. and Pinna, N. (2007) Nonaqueous Synthesis, Assembly and Formation Mechanisms of Metal Oxide Nanocrystals. International Journal of Nanotechnology, 4, 263-281.
https://doi.org/10.1504/IJNT.2007.013473

[22]   Aspinall, H.C., Bacsa, J., Jones, A.C., Wrench, J.S., Black, K., Chalker, P.R., King, P.J., Marshall, P., Werner, M., Davies, H.O. and Odedra, R. (2011) Ce(IV) Complexes with Donor-Functionalized Alkoxide Ligands: Improved Precursors for Chemical Vapor Deposition of CeO2. Inorganic Chemistry, 50, 11644-11652.
https://doi.org/10.1021/ic201593s

[23]   Ribot, F., Toledano, P. and Sanchez, C. (1991) Hydrolysis-Condensation Process of β-Diketonates-Modified Cerium(IV) Isopropoxide. Chemistry of Materials, 3, 759-764.
https://doi.org/10.1021/cm00016a035

[24]   Khalil, K.M.S., Elkabee, L.A. and Murphy, B. (2005) Preparation and Characterization of Thermally Stable Porous Ceria Aggregates Formed via a Sol-Gel Process of Ultrasonically Dispersed Cerium(IV) Isopropoxide. Microporous and Mesoporous Materials, 78, 83-89.
https://doi.org/10.1016/j.micromeso.2004.09.019

[25]   Strydom, C.A. and Van Vuuren, C.P.J. (1987) The Thermal Decomposition of Cerium(III) Nitrate. Journal of Thermal Analysis, 32, 157-160.
https://doi.org/10.1007/BF01914558

[26]   Gradeff, P.S., Schreiber, F.G. and Mauermann, H. (1986) Preparation of Ceric Alkoxides in Glycol Ethers. Journal of the Less Common Metals, 126, 335-338.
https://doi.org/10.1016/0022-5088(86)90319-X

[27]   Vaartstra, B.A., Huffman, J.C., Gradeff, P.S., Hubert-Pfalzgraf, L.G., Daran, J.C., Parraud, S., Yunlu, K. and Caulton, K.G. (1990) Alcohol Adducts of Alkoxides: Intramolecular Hydrogen Bonding as a General Structural Feature. Inorganic Chemistry, 29, 3126-3131.
https://doi.org/10.1021/ic00342a014

[28]   Masson, S., Holliman, P., Kalaji, M. and Kluson, P. (2009) The Production of Nanoparticulate Ceria Using Reverse Micelle Sol-Gel Techniques. Journal of Materials Chemistry, 19, 3517-3522.
https://doi.org/10.1039/b820098j

[29]   Theocharis, C.R. (1993) The Measurement of Mesoporosity. In: Multifunctional Mesoporous Inorganic Solids, Kluwer Academic Publishers, Springer, Dordrecht, Vol. 400, 3-18.
https://doi.org/10.1007/978-94-015-8139-4_1

[30]   Rouquerol, F., Rouquerol, J., Sing, K.S.W., Llewellyn, P. and Maurin, G. (2014) Adsorption by Powders and Porous Solids: Principles, Methodology and Applications. Academic Press, Cambridge.

[31]   Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J. and Sing, K.S.W. (2015) Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87, 1051-1069.
https://doi.org/10.1515/pac-2014-1117

[32]   Yadav, L.S.R., Lingaraju, K., Prasad, B.D., Kavitha, C., Banuprakash, G. and Nagaraju, G. (2017) Synthesis of CeO2 Nanoparticles: Photocatalytic and Antibacterial Activities. The European Physical Journal Plus, 132, 239-248.
https://doi.org/10.1140/epjp/i2017-11462-4

[33]   Kockrick, E., Krawiec, P., Petasch, U., Martin, H.P., Herrmann, M. and Kaskel, S. (2008) Porous CeOx/SiC Nanocomposites Prepared from Reverse Polycarbosilane-Based Microemulsions. Chemistry of Materials, 20, 77-83.
https://doi.org/10.1021/cm071657n

[34]   Kockrick, E., Schrage, C., Grigas, A., Geiger, D. and Kaskel, S. (2008) Synthesis and Catalytic Properties of Microemulsion-Derived Cerium Oxide Nanoparticles. Journal of Solid State Chemistry, 181, 1614-1620.
https://doi.org/10.1016/j.jssc.2008.04.036

[35]   Nagy, K. and Dékány, I. (2009) Preparation of Nanosize Cerium Oxide Particles in W/O Microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 345, 31-40.
https://doi.org/10.1016/j.colsurfa.2009.04.010

[36]   Soren, S., Bessoi, M. and Parhi, P. (2015) A Rapid Microwave Initiated Polyol Synthesis of Cerium Oxide Nanoparticles Using Different Cerium Precursors. Ceramics International, 41, 8114-8118.
https://doi.org/10.1016/j.ceramint.2015.03.013

[37]   Lee, S.S., Zhu, H., Contreras, E.Q., Prakash, A., Puppala, H.L. and Colvin, V.L. (2012) High Temperature Decomposition of Cerium Precursors to Form Ceria Nanocrystal Libraries for Biological Applications. Chemistry of Materials, 24, 424-432.
https://doi.org/10.1021/cm200863q

[38]   Ushakov, N.M., Yurkov, G.Y., Gorobinskii, L.V., Popkov, O.V. and Kosobudskii, I.D. (2008) Nanocomposites Based on the Cerium Oxide Nanoparticles and Polyethylene Matrix: Syntheses and Properties. Acta Materialia, 56, 2336-2343.
https://doi.org/10.1016/j.actamat.2008.01.019

[39]   Choudhury, B. and Choudhury, A. (2012) Ce3+ and Oxygen Vacancy Mediated Tuning of Structural and Optical Properties of CeO2 Nanoparticles. Materials Chemistry and Physics, 131, 666-671.
https://doi.org/10.1016/j.matchemphys.2011.10.032

 
 
Top