AJPS  Vol.10 No.8 , August 2019
Effect of the Form and Nature of Nitrogen on Growth and Nodulation of Pigeon Pea (Cajanus cajan (L.) Millsp) on Sandy Soil of Mont-Amba, in Democratic Republic of Congo
Abstract: The study was carried out on the impact assessment of the form and nature of the different nitrogen sources used in culture on growth and nodulation of pigeon pea (Cajanus cajan (L.) Millsp) during 3 months of observation on sandy soil of Mount Amba (at the University of Kinshasa in the Democratic Republic of Congo). Height and collar diameter growth, underground and total biomass dry weight, number and dry pea nodules and nodulation index have been evaluated at 4, 6, 8, 10 and 12 weeks of growth to assess the response of the legume to mineral nitrogen and organic nitrogen from chickens manure and pig feces. After observations, it appears that all the treatments soil showed different effects on growth and nodulation of pigeon pea. Therefore, only the soil received 1 kg of pig feces stimulated (p 0.05) the development of pigeon pea which resulted in good growth (nodulation 116.8 nodules and nodulation index of 5.0) and biomass production (25.3 gr per plant) while the addition of chicken manure, whatever the dose, reduced them.
Cite this paper: Muyayabantu, G. , Kabwe, N. , Mutombo, J. and Dikand, K. (2019) Effect of the Form and Nature of Nitrogen on Growth and Nodulation of Pigeon Pea (Cajanus cajan (L.) Millsp) on Sandy Soil of Mont-Amba, in Democratic Republic of Congo. American Journal of Plant Sciences, 10, 1457-1467. doi: 10.4236/ajps.2019.108103.

[1]   Bollard, E.G. (1983) Involvement of Unusual Elements in Plant Growth and Nutrition. Encyclopedia of Plant Physiology. New Series, 15B, 695-744.

[2]   Kang, B.T. and Wilson, G.G. (1987) The Development of Alley Cropping as a Promising Agroforestry Technology. In: Steppler, H.A. and Nair, P.K.R., Eds., Agroforestry: A Decade of Development, ICRAF, Nairobi, 227-243.

[3]   Ermani, P.R. and Barber, S.A. (1990) Comparison of P-Availability from Monocalcium and Diammonium Phosphates Using a Mechanistic Nutrient Uptake Model. Fertilizer Research, 22, 534-538.

[4]   Bulakali, B., Lumande, K., Mbayan, N., Luyindula N. and Mwange, K. (1999) Effets de la double symbiose Rhizobium TAL 1147-Glomus clarum sur la croissance et la nodulation de Racosperma auriculiforme en République Démocratique du Congo.

[5]   Kadiata, B.D. and Lumpungu, K. (2003) Differential Phosphorus Uptake and Use Efficiency among Selected Nitrogen-Fixing Tree Legumes over Time. Journal of Plant Nutrition, 26, 1009-1022.

[6]   Danso, S.K.A. and Eskew, D.L. (1985) Comment renforcer la fixation biologique de l’azote. FAO/AIEA Bulletin, 26, 29-32.

[7]   Walaga, C., Egulu, B., Bekunda, M. and Ebanyat, P. (2000) Impact of Policy Change on Soil Fertility Management in Uganda. In: Hilhorst, T. and Muchechena, F.M., Eds., Nutrients on the Move-Soil Fertility Dynamics in Africa Faming Systems, International Institute for Environment and Development, London, 29-44.

[8]   Scoones, I., Chibudu, C., Chikura, S., Jeranyama, P., Mchaka, D., Machanja, W., Mavedzenge, B., Mombeshora, B., Mudhara, M., Mudziwo, C., Murimbarimba, F. and Zirereza, B. (1996) Hazards and Opportunities. Farming Livelihoods in Dryland Africa: Lessons from Zimbabwe. Zed Books Ltd., International Institute for Environment and Development, London.

[9]   Bekunda, M.A., Bationo, A. and Ssali, H. (1997) Soil Fertility Management in Africa. A Review of the Selected Trials. In: Buresh, R.J., Sanchez, P.A. and Calhoun, F., Eds., Replenishing Soil Fertility in Africa, Soil Science Society of America, Madison, WI, 63-79.

[10]   Quinones, M.A., Borlaug, N.E. and Dowsell C.R. (1997) A Fertilizer-Based Green Evolution for Africa. In: Buresh, J.R., Sanchez, P.A. and Calhoun, F., Eds., Replenishing Soil Fertility in Africa, Soil Science Society of America, Madison, WI, 81-96.

[11]   Sanginga, N., Lyasse, O., Diels, J. and Merckx, R. (2003) Balanced Nutrient Management Systems for Cropping Systems in the Tropics: From Concept to Practice. Agriculture, Ecosystems & Environment, 100, 99-102.

[12]   Ramade, F. (1998) Eléments d’écologie appliquée: Actions de l’homme sur la biosphère. 5th Edition, Sciences Internationales, France, 621 p.

[13]   Bonnier, C. and Seeger, J. (1959) Symbiose rhizobium-légumineuses en région équatoriale. INEAC, Gemboux, Bruxelles, 65 p.

[14]   Gitonga, N.M., Shisanya, C.A., Maingi, J.M. and Hornetz, B. (1999) Nitrogen Fixation by Vigna radiata L. Wilczek in Pure and Mixed Stands in Southeast Kenya. Symbiosis, 27, 239-250.

[15]   Hornetz, B., Shisanya, C.A. and Gitonga, N.M. (2000) Studies on the Ecophysiology of Locally Suitable Cultivars of Food Crops and Soil Fertility Monitoring in the Semi-Arid Areas of Southeast Kenya. Materialien zur Ostafrika-Forschung, Universitaet Verlag, Trier.

[16]   Maingi, J.M., Shisanya, C.A., Gitonga, N.M. and Hornetz, B. (2001) Nitrogen Fixation by Common Bean (Phaseolus vulgaris L.) in Pure and Mixed Stands in Semi-Arid South-East Kenya. European Journal of Agronomy, 14, 1-12.

[17]   Shisanya, C.A. (2004) Improvement of Grain Legume Production in Semi-Arid Kenya through Biological Nitrogen Fixation: The Experience with Tepary Bean (Phaseolus acutifolius A. Gray var. Latifolius). In: Dris, R. and Jain, S.M., Eds., Production Practices and Quality Assessment of Food Crops, Kluwer Academic publisher, Dordrecht, The Netherlands, 163-188.

[18]   Joly, C. (1991) La fixation biologique de l’azote au sein des programmes de production agricole de la FAO dans le contexte d’un développement durable. In: Rapport sur la consultation d’experts sur la production et le controle de qualité des inoculums pour légumineuses. FAO, Rome, 11-12.

[19]   Chris, A. and Gitonga, N.M. (2007) Evaluation of Nitrogen Fixation Using 15N Dilution Methods and Economy of a Maize-Tepary Bean Intercrop Farming System in Semi-Arid SE-Kenya. In: Bationo, A., Waswa, B., Kihara, J. and Kimetu, J., Eds., Advances in Integrated Soil Fertility Management in Sub-Saharan Africa: Challenges and Opportunities, Springer, Dordrecht, 389-400.

[20]   Rao Kumar, J.V.D.K., Dart, P.J. and Sastry, P.V.S.S. (1983) Residual Effect of Pigeonpea (Cajanus cajan (L) Millsp) on Yield and Nitrogen Response of Maize. Experimental Agriculture, 19, 131-141.

[21]   Whiteman, P.C., Byth, D.E. and Wallis, E.S. (1985) Pigeonpea (Cajanus cajan (L) Millsp). In: Summerfield, R.J. and Roberts, E.H., Eds., Grain Legumes Crops, London, 658-698.

[22]   Skerman, P.J. (1982) Les légumineuses fourragères tropicales. FAO, Rome, 535-543.

[23]   Borget, M. (1989) Les légumineuses vivrières. Ed. Maison Neuve et Larose, Paris, 161 p.

[24]   Yvon, D., Emile, D. and Hoang Gia, D. (1999) Arbres fixateurs d’azote: Caractéristiques fondamentales et role dans l’aménagement des écosystèmes méditerranéens et tropicaux. Ed. Espace 34, Montpellier, p. 499.

[25]   Carsky, R.J., Douthwaiteb, B., Manyong, V.M., Sanginga, N., Schulz, S., Vanlauwe, B., Diels, J. and Keatinge, J.D.H. (2003) Amélioration de la gestion des sols par l’introduction des légumineuses dans les systèmes céréaliers des savanes africaines. Cahier d’Etudes et de Recherche Francophones, 12, 207-286.

[26]   Sanginga, N., Bowen, G.D. and Danso, S.K.A. (1991) Intra-Specific Variation in Growth and P Accumulation of Leucaena leucophala, and Gliricidia sepium as Influenced by Soil and Phosphate Status. Plant and Soil, 133, 201-208.

[27]   Sanginga, N., Lyasse, O. and Singh, B.B. (2000) Phosphorus Use Efficiency and Nitrogen Balance of Cowpea Breeding Lines in a Low P Soil of the Derived Savanna Zone in West Africa. Plant and Soil, 220, 119-128.

[28]   Zuang, H. (1982) La fertilisation des cultures légumières. Centre Technique Interprofessionnel des fruits et légumes. Paris, 396 p.

[29]   Makoko, M., Ndembo, L. and Nsimba, M. (1991) Hydrodynamique des sols de Kinshasa, les sols du Mont-Amba: caractéristiques pédologiques, mécanique et stock d’eau. Revue Congolaise des Sciences Nucléaires, 12, 72.

[30]   Kadiata, B.D., Mulongoy, K., Isirimah, N.O. and Amakiri, M.A. (1996) Screening Woody and Shrub Legumes for Growth, Nodulation and Nitrogen-Fixation Potential in Two Contrasting Soils. Agroforestry Systems, 33, 137-152.

[31]   Chatel, D.L., Robson, A.D., Gartrell, J.W. and Dilworth, M.J. (1978) The Effect of Inoculation and Cobalt Application on the Growth and Nodulation of Sweet Lupin. Australian Journal of Agricultural Research, 29, 1191-1202.

[32]   Chaudri, A.M., Mcgrath, S.P. and Giller, K.E. (1992) Survival of the Indigenous Population of Rhizobium leguminosarum biovar trifolii in Soil Spiked with Cd, Zn, Cu and Ni Salts. Soil Biology and Biochemistry, 24, 625-632.

[33]   Madariaga, G.M. and Angle, J.S. (1992) Sludge-Born Salt Effects on Survival of Bradyrhizobium japonicum. Journal of Environmental Quality, 21, 276-280.

[34]   Brockwell, J. and Bottomley, P.J. (1995) Recent Advances in Inoculant Technology and Prospects for the Future. Soil Biology and Biochemistry, 27, 683-697.

[35]   Lescheber, R. (1991) Organic Substances in Sewage Sludges: State of the Art. In: L’Hermite, P., Ed., Treatment and Use of Sewage Sludge and Liquid Agricultural Wastes, Elsevier Applied Sciences, London, 132-140.

[36]   Wild, S.R., Berrow, M.L. and Jones, K.C. (1991) The Persistence of Polynuclear Aromatic Hydrocarbons in Sewage Sludge-Amendeol Agricultural Soils. In: L’hermite, P., Ed., Treatment and Use of Sewage Sludge and Liquid Agricultural Wastes, Elsevier Applied Science, London, 166-173.

[37]   Abd-Alla, M.H., Yan, F. and Schubert, S. (1999) Effects of Sewage Sludge Application on Nodulation, Nitrogen Fixation and Plant Growth of Fababean, Soybean, and Lupin. Journal of Applied Botany, 73, 69-75.

[38]   Abd-Alla, M.H. and Abdel Wahab, A.M. (1995) Survival of Rizobium leguminosarum biovar. viciae Subjected to Heat, Drought and Salinitiy in Soil. Biologia Plantarum, 37, 131-137.

[39]   Heckeman, J.R., Angle, J.S. and Chaney, R.L. (1987) Residual Effects of Sewage Sludge on Soybean: I. Accumulation of Heavy Metals. Journal of Environmental Quality, 16, 113-117.