Back
 JAMP  Vol.7 No.8 , August 2019
3D Numerical Simulation of Aerodynamic Characteristics of a Gas Filter
Abstract:
The filter paper and activated carbon which filled inside the gas filter have porous media characteristics. In order to study the flow field structure in the filter layer and the activated carbon layer, Computational Fluid Dynamics method is used to simulate the aerodynamic characteristics of a simplified gas filter. The inertial and viscosity parameters of porous media are solved by Forchheimer equation. The three-dimensional N-S equation and the modified low Reynolds number k-ε turbulence model are adopted to analyze the influence of the explosion-proof plate on the gas filter’s aerodynamic characteristics. The results showed that the air age in the upstream of the activated carbon plates was small, which easily caused the rapid penetration of the Poisonous gas. And in the downstream and around of the activated carbon plates, the air age is larger, formed dead zone, the utilization rate of activated carbon is lower. The explosion-proof plate increases the pressure drop of the gas filter, the air age distribution in the filter layer is more uniform and the utilization rate of filter paper is improved. However, the explosion-proof plate has little influence on the flow field structure of the activated carbon layer.
Cite this paper: Si, F. , Lian, P. , Yang, D. , Han, G. , Hao, S. and Ye, P. (2019) 3D Numerical Simulation of Aerodynamic Characteristics of a Gas Filter. Journal of Applied Mathematics and Physics, 7, 1920-1928. doi: 10.4236/jamp.2019.78132.
References

[1]   Subrenat, A., Bellettre, J. and Le Cloirec, P. (2003) 3-D Numerical Simulations of Flow in a Cylindrical Pleated Filter Packed With Activated Carbon Cloth. Chemical Engineering Science, 58, 4965-4973. https://doi.org/10.1016/j.ces.2003.07.012

[2]   Baléo, J.N. and Le Cloirec, P. (2000) Numerical Simulation of the Spatial Distribution of Mean Residence Time in Complex Flow through Porous Media. Progress of Theoretical Physics, 138, 690-695. https://doi.org/10.1143/PTPS.138.690

[3]   Baléo, J.N., Subrenat, A. and Le Cloirec, P. (2000) Numerical Simulation of Flows in Air Treatment Devices Using Activated Carbon Cloths Filters. Chemical Engineering Science, 55, 1807-1816. https://doi.org/10.1016/S0009-2509(99)00441-8

[4]   Möβner, M. and Radespiel, R. (2017) Flow Simulations over Porous Media-Comparisons with Experiments. Computers and Fluids, 1-13. https://doi.org/10.1016/j.compfluid.2017.03.002

[5]   Li, C.C. and Su, Y.C. (2009) CFD Simulation of a Gas Mask Filter in Three Realistic Breathing Patterns. Journal of Flow Visualization & Image Processing, 16, 201-219. https://doi.org/10.1615/JFlowVisImageProc.v16.i3.10

[6]   Li, C.C. (2009) Aerodynamic Behavior of a Gas Mask Canister Containing Two Porous Media. Chemical Engineering Science, 64, 1832-1834. https://doi.org/10.1016/j.ces.2009.01.009

[7]   Su, Y.C. and Li, C.C. (2015) Computational Fluid Dynamics Simulations and Tests for Improving Industrial-Grade Gas Mask Canisters. Advances in Mechanical Engineering, 7, 1-14. https://doi.org/10.1177/1687814015596297

[8]   Si, F.F., Ye, P.W., Huang, F., Xi, L., Wang, L.Y. and Yang, D.R. (2019) 3D Numerical Simulation of the Aerodynamic Characteristics of Arc Canister. Journal of Ordnance Equipment Engineering, 40, 28-33.

 
 
Top