Back
 JBiSE  Vol.12 No.8 , August 2019
Predictors for Predicting Temperature Optimum in Beta-Glucosidases
Abstract: This is the continuation of our studies on beta-glucosidase, which plays an important role in biological processes and recently strong interests focus on their potential role in biofeul production. In order to develop simple methods to predict the optimal working condition for beta-glucosidase, we used a 20-1 feedforward backpropagation neural network to screen possible predictors to predict the temperature optimum of beta-glucosidase from 25 amino-acid properties related to the primary structure of beta-glucosidases. The results show that the normalized polarizability index and amino-acid distribution probability can predict the temperature optimum of beta-glucosidase, which highlights a cost-effective way to predict various enzymatic parameters of beta-glucosidase.
Cite this paper: Yan, S. and Wu, G. (2019) Predictors for Predicting Temperature Optimum in Beta-Glucosidases. Journal of Biomedical Science and Engineering, 12, 414-426. doi: 10.4236/jbise.2019.128033.
References

[1]   Jeng, W.Y., Wang, N.C., Lin, M.H., Lin, C.T., Liaw, Y.C., Chang, W.J., Liu, C.I., Liang, P.H. and Wang, A.H. (2011) Structural and Functional Analysis of Three β-Glucosidases from Bacterium Clostridium cellulovorans, Fungus Trichoderma reesei and Termite Neotermes koshunensis. Journal of Structural Biology, 173, 46-56.

[2]   Kacher, Y., Brumshtein, B., Boldin-Adamsky, S., Toker, L., Shainskaya, A., Silman, I., Sussman, J.L. and Futerman, A.H. (2008) Acid β-Glucosidase: Insights from Structural Analysis and Relevance to Gaucher Disease Therapy. Biological Chemistry, 389, 1361-1369.
https://doi.org/10.1515/BC.2008.163

[3]   Granovsky-Grisaru, S., Belmatoug, N., vom Dahl, S., Mengel, E., Morris, E. and Zimran, A. (2011) The Management of Pregnancy in Gaucher Disease. European Journal of Obstetrics & Gynecology and Reproductive Biology, 156, 3-8.
https://doi.org/10.1016/j.ejogrb.2010.12.024

[4]   Chen, K.I., Erh, M.H., Su, N.W., Liu, W.H., Chou, C.C. and Cheng, K.C. (2012) Soyfoods and Soybean Products: from Traditional Use to Modern Applications. Applied Microbiology & Biotechnology, 96, 9-22.
https://doi.org/10.1007/s00253-012-4330-7

[5]   Dashtban, M., Maki, M., Leung, K.T., Mao, C. and Qin, W. (2010) Cellulase Activities in Biomass Conversion: Measurement Methods and Comparison. Critical Reviews in Biotechnology, 30, 302-309.

[6]   Wilson, D.B. (2009) Cellulases and Biofuels. Current Opinions in Biotechnology, 20, 295-299.
https://doi.org/10.1016/j.copbio.2009.05.007

[7]   Schomburg, I., Chang, A., Hofmann, O., Ebeling, C., Ehrentreich, F. and Schomburg, D. (2002) BRENDA: A Resource for Enzyme Data and Metabolic Information. Trends in Biochemical Sciences, 27, 54-56.
https://doi.org/10.1016/S0968-0004(01)02027-8

[8]   Placzek, S., Schomburg, I., Chang, A., Jeske, L., Ulbrich, M., Tillack, J. and Schomburg, D. (2017) BRENDA in 2017: New Perspectives and New Tools in BRENDA. Nucleic Acids Research, 45, D380-D388.
https://doi.org/10.1093/nar/gkw952

[9]   Yan, S. and Wu, G. (2011) Searching of Predictors to Predict pH of Cellulases. Applied Biochemistry and Biotechnology, 165, 856-869.
https://doi.org/10.1007/s12010-011-9303-2

[10]   Yan, S. and Wu, G. (2013) Prediction of Optimal pH in Hydrolytic Reaction of Beta-Glucosidase. Applied Biochemistry and Biotechnology, 169, 1884-1894.
https://doi.org/10.1007/s12010-013-0103-8

[11]   Yan, S. and Wu, G. (2012) Prediction of Optimal pH and Temperature of Cellulases Using Neural Network. Protein & Peptide Letters, 19, 29-39.
https://doi.org/10.2174/092986612798472794

[12]   Yan, S., Shi, D., Nong, H. and Wu, G. (2011) Simultaneously Predicting pH and Temperature Optimum in Catalytic Reaction of Beta-Glucosidase. Guangxi Sciences, 18, 253-260.

[13]   Yan, S. and Wu, G. (2019) Predicting pH Optimum for Activity of Beta-Glucosidases. Journal of Biomedical Science and Engineering, 12, 354-367.
https://doi.org/10.4236/jbise.2019.127027

[14]   Yan, S. and Wu, G. (2012) Exhausted Jackknife Validation Exemplified by Prediction of Temperature Optimum in Enzymatic Reaction of Cellulases. Applied Biochemistry and Biotechnology, 166, 997-1107.
https://doi.org/10.1007/s12010-011-9487-5

[15]   Yan, S. and Wu, G. (2013) Prediction of Temperature Optimum in Enzymatic Reaction of Beta-Cellobiosidases with Exhausted Jackknife Validation. Life Science Journal, 10, 1673-1678.

[16]   Yan, S. and Wu, G. (2011) Prediction of Michaelis-Menten Constant in Beta-Cellobiosidase’s Reaction with Lactoside as Substrate. Enzyme Engineering, 1, 102.

[17]   Yan, S. and Wu, G. (2011) Prediction of Michaelis-Menten Constant of Beta-Glucosidases Using Nitrophenyl-Beta-D-Glucopyranoside as Substrate. Protein & Peptide Letters, 18, 1053-1057.
https://doi.org/10.2174/092986611796378747

[18]   Yan, S., Shi, D., Nong, H. and Wu, G. (2012) Predicting Km Values of Beta-Glucosidases Using Cellobiose as Substrate. Interdisciplinary Sciences: Computational Life Sciences, 4, 46-53.
https://doi.org/10.1007/s12539-012-0115-z

[19]   Yan, S. and Wu, G. (2013) Prediction of Turnover Number of Cellulose 1,4-Beta-Cellobiosidase. Protein & Peptide Letters, 20, 255-264.

[20]   Berrin, J.G., Czjzek, M., Kroon, P.A., McLauchlan, W.R., Puigserver, A., Williamson, G. and Juge, N. (2003) Substrate (aglycone) Specificity of Human Cytosolic Beta-Glucosidase. Biochemical Journal, 373, 41-48.
https://doi.org/10.1042/bj20021876

[21]   Tsukada, T., Igarashi, K., Fushinobu, S. and Samejima, M. (2008) Role of Subsite +1 Residues in Temperature Dependence and Catalytic Activity of the Glycoside Hydrolase Family 1 Beta-Glucosidase BGL1A from the Basidiomycete Phanerochaete chrysosporium. Biotechnology and Bioengineering, 99, 1295-1302.
https://doi.org/10.1002/bit.21717

[22]   Gundllapalli, S.B., Pretorius, I.S. and Cordero Otero, R.R. (2007) Effect of the Cellulose-Binding Domain on the Catalytic Activity of a Beta-Glucosidase from Saccharomycopsis fibuligera. Journal of Industrial Microbiology & Biotechnology, 34, 413-421.
https://doi.org/10.1007/s10295-007-0213-9

[23]   Chen, H., Hayn, M. and Esterbauer, H. (1992) Purification and Characterization of Two Extracellular Beta-Glucosidases from Trichoderma reesei. Biochimica et Biophysica Acta, 1121, 54-60.
https://doi.org/10.1016/0167-4838(92)90336-C

[24]   UniProt Consortium (2019) UniProt: A Worldwide Hub of Protein Knowledge. Nucleic Acids Research, 47, D506-D515.
https://doi.org/10.1093/nar/gky1049

[25]   Burlingame, A.L. and Carr, S.A. (1996) Mass Spectrometry in the Biological Sciences. Humana Press, Totowa, NJ.
https://doi.org/10.1007/978-1-4612-0229-5

[26]   Zamyatin, A.A. (1972) Protein Volume in Solution. Progress in Biophysics & Molecular Biology, 24, 107-123.
https://doi.org/10.1016/0079-6107(72)90005-3

[27]   Darby, N.J. and Creighton, T.E. (1993) Dissecting the Disulphide-Coupled Folding Pathway of Bovine Pancreatic Trypsin Inhibitor. Forming the First Disulphide Bonds in Analogues of the Reduced Protein. Journal of Molecular Biology, 232, 873-896.
https://doi.org/10.1006/jmbi.1993.1437

[28]   Kyte, J. and Doolittle, R.F. (1982) A Simple Method for Displaying the Hydropathic Character of a Protein. Journal of Molecular Biology, 157, 105-132.
https://doi.org/10.1016/0022-2836(82)90515-0

[29]   Trinquier, G., Sanejouand, Y.H. and Hausman, R.E. (1998) Which Effective Property of Amino Acids is Best Preserved by the Genetic Code? Protein Engineering, Design and Selection, 11, 153-169.
https://doi.org/10.1093/protein/11.3.153

[30]   Cooper, G.M. (2004) The Cell: A Molecular Approach. ASM Press, Washington DC, 51.

[31]   Dwyer, D.S. (2005) Electronic Properties of Amino Acid Side Chains: Quantum Mechanics Calculation of Substituent Effects. BMC Chemical Biology, 5, 2.
https://doi.org/10.1186/1472-6769-5-2

[32]   Chou, P.Y. and Fasman, G.D. (1978) Prediction of Secondary Structure of Proteins from Amino Acid Sequence. Advances in Enzymology and Related Subjects of Biochemistry, 47, 45-148.
https://doi.org/10.1002/9780470122921.ch2

[33]   Feller, W. (1968) An Introduction to Probability Theory and Its Applications. 3rd Edition, Wiley, New York.

[34]   Wu, G. and Yan, S. (2008) Prediction of Mutations Engineered by Randomness in H5N1 Hemagglutinins of Influenza A Virus. Amino Acids, 35, 365-373.
https://doi.org/10.1007/s00726-007-0602-4

[35]   Wu, G. and Yan, S. (2008) Lecture Notes on Computational Mutation. Nova Science Publishers, New York.

[36]   Yan, S. and Wu, G. (2009) Descriptively Quantitative Relationship between Mutated N-Acetylgalactosamine-6-Sulfatase and Mucopolysaccharidosis IVA. Peptide Science, 92, 399-404.
https://doi.org/10.1002/bip.21205

[37]   Yan, S. and Wu, G. (2010) Prediction of Mutation Positions in H5N1 Neuraminidases by Means of Neural Network. Annals of Biomedical Engineering, 38, 984-992.
https://doi.org/10.1007/s10439-010-9907-7

[38]   Yan, S. and Wu, G. (2010) Linking Mutated Structure of Adrenoleukodystrophy Protein with X-Linked Adrenoleukodystrophy. Computer Methods in Biomechanics and Biomedical Engineering, 13, 403-411.
https://doi.org/10.1080/10255840903279974

[39]   Demuth, H. and Beale, M. (2001) Neural Network Toolbox for Use with MatLab. User’s Guide, Version 4, MathWorks Inc., Natick, MA.

[40]   MathWorks Inc (1984-2001) MatLab-The Language of Technical Computing (Version 6.1.0.450, Release 12.1). MathWorks Inc., Natick, MA.

[41]   Chou, K.C. and Zhang, C.T. (1995) Prediction of Protein Structural Classes. Critical Reviews in Biochemistry and Molecular Biology, 30, 275-349.
https://doi.org/10.3109/10409239509083488

[42]   Chou, K.C. and Shen, H.B. (2010) Plant-mPLoc: A Top-Down Strategy to Augment the Power for Predicting Plant Protein Subcellular Localization. PLoS One, 5, e11335.
https://doi.org/10.1371/journal.pone.0011335

[43]   Sokal, R.R. and Rohlf, F.J. (1995) Biometry: The Principles and Practices of Statistics in Biological Research. 3rd Edition, W. H. Freeman, New York, 203-218.

[44]   Campbell, R.L. and Davies, P.L. (2012) Structure-Function Relationships in Calpains. Biochemical Journal, 447, 335-351.
https://doi.org/10.1042/BJ20120921

[45]   Sacchi, S., Caldinelli, L., Cappelletti, P., Pollegioni, L. and Molla, G. (2012) Structure-Function Relationships in Human D-Amino Acid Oxidase. Amino Acids, 43, 1833-1850.
https://doi.org/10.1007/s00726-012-1345-4

[46]   Silavi, R., Divsalar, A. and Saboury, A.A. (2012) A Short Review on the Structure-Function Relationship of Artificial Catecholase/Tyrosinase and Nuclease Activities of Cu-Complexes. Journal of Biomolecular Structure and Dynamics, 30, 752-772.
https://doi.org/10.1080/07391102.2012.689704

 
 
Top